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CNNs and Spatial Processing
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9. CNNs and Spatial Processing

* How to use deep nets for images

* New layer types: convolutional, pooling

* Feature maps and multichannel representations
* Popular architectures: Alexnet, VGG, Resnets

e (Getting to know learned filters

e Unit visualization
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Problem:

What happens to objects that are bigger?

What if an object crosses multiple cells?



“‘Cell”-based approach is limited.

What can we do instead?



What's the object class of the center pixel?
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} What's the object class of the center pixel?
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(Colors represent one-hot codes)

This problem is called semantic segmentation



What's the object class of the center pixel?

Translation invariance: process
each patch in the same way.

An equivariant mapping:
f(translate(x)) = translate(f(z))



W computes a weighted sum of all pixels in the patch
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W is a convolutional kernel applied to the full image!




Convolution




~ully-connected network

Fully-connected (fc) layer




| ocally connected network

Often, we assume output is a
local function of input.

f we use the same weights

(weight sharing) to compute
(z) each local function, we get a

convolutional neural network.
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Convolutional neural network

Conv layer

99999935

Zz=woX-+Db

Often, we assume ou

put IS a

local function o

- Input.

It we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.




Conv layer
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Zz=woX-+Db

Weight sharing

{53

Often, we assume output is a

local function of input.

It we use the same weights
(weight sharing) to compute
each local function, we get a

convolutiona

neural network.



Linear system: 'y =/f(x)

[t can also be represented as a fully
. connected linear neural network

A linear function f can be written
as a matrix multiplication:

i  O—— o = n.
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N indexes rows,

Is the strength of the connection
K indexes columns h [n k]

between x[k] and y[n]




Convolution

A linear shift invariant (LSI)
function f can be written
as a matrix multiplication:

1t can also be represented as a
- convolutional layer of neural net:
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’i Is the strength of the connection
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2 [n B k] n indexes rows,
K indexes columns between x[k] and y[n]




Toeplitz matrix
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e.d., pixel iImage

e (Constrained linear layer
e Fewer parameters —> easier to learn, less overfitting









Conv layers can be applied to arbitrarily-sized inputs



Five views on convolutional layers

. Equivariant with translation  f(translate(z)) = translate(f(z))
. Patch processing
. Image filter

O

. Parameter sharing %
O}
O
O‘W

O

. A way to process variable-sized tensors




What if we have color?

(aka multiple input channels?)




Multiple channel iInputs

Conv layer
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Multiple channel outputs

Conv layer
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Multiple channels
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2-dimensional output
INnput features A bank of 2 filters feature maps

%HXWXC(Z_Fl)

[Figure modified from Andrea Vedaldi]



-eature maps

Z RNEUE
convl E.a-

=
BEpERzZz

relul convz reluz

e Each layer can be thought of as a set of C feature maps aka channels
e -ach feature map Is an NxM image

Image source: https://stackoverflow.com/questions/456784 7 3/convolution-neural-networks-all-feature-maps-are-blackpixel-value-is-0



Multiple channels: Example

X A (1+1)

128
I:{> Filter Bank with I:{>
3x3 filters
128

3 96

128

128

How many parameters does each filter have?
@) 9 b)27 ()96 (d) 864



Multiple channels: Example

X A (1+1)

128
I:{> Filter Bank with I:{>
3x3 filters
128

3 96

128

128

How many filters are in the bank?
(a) 3 o) 27 (c)96 (d) can’t say



Fllter sizes

When mapping from

RHXW X C P HXW XC(141)

X & —  X(+1) €

using an filter of spatial extent M x N

Number of parameters per filter: M x N x C

Number of filters:  C'(;4 1)



Pooling and downsampling

\

We need translation and scale invariance



Image pyramids




Gaussian Pyramid




Multiscale representations are great!

T .

512 256 128

SN

Gaussian Pyr Laplacian Pyr

How can we use multi-scale modeling in Convnets?



Oriented filters

Blur

Downsampling

42



molelllale

Filter Pool
O O O Max pooling
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molelllale

Filter Pool
O O O Max pooling
O O—0 O
O O—0O O y; = Inax h
O- O—C- O JEN(J)
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Pooling — Why"

Pooling across spatial locations achieves
stability w.r.t. small translations:

Imax




Pooling — Why"

Pooling across spatial locations achieves
ity w.r.t. small translations:

stabl

large response

regard
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Pooling — Why"

Pooling across spatial locations achieves
stability w.r.t. small translations:




CNNs are stable w.r.t. diffeomorphisms

[“Unreasonable effectiveness of

Deep Features as a

Perceptual Metric”, Zhang et al. 2018]



Pooling across channels — Why"?

Pooling across feature channels (filter outputs)
can achieve other kinds of invariances:

large response
for any edge,
regardless of its
orientation

[Derived from slide by Andrea Vedaldi]



Computation in a neural net
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f(x)=fo(... f2(f1(x)))



Downsampling

Filter Pool and downsample
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Downsampling

Filter Downsample
O OO0 O
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Strided operations

Conv layer

o 00
W

O Stride 2 Strided operations combine a
o @O given operation (convolution or
O pooling) and downsampling into
8 OO a single operation.
O



Computation in a neural net

\A 1 . ))
— “clown fish

f(x) = fo(... f2(f1(x)))



Receptive fields




Receptive fields

Pool and downsample . Pool and downsample
hy O 3x1 Filter by o
O Y y
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RF = RF"2 RF = RF + floor(3/2)*2 RF = RF2
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Effective Receptive Field
Contributing input units to a convolutional filter. @jimmfleming // fomoro.com

Input Features

7 // 2 Convolution
Each filter sees 7 input units

Convolutional Features

2 // 2 Max Pool

Each filter sees 9 input units

Max Pool Features

3 // 1 Convolution
Each filter sees 17 input units

Features .
Conv1D Filter [

Padding or Stride

Convolutional Features Receptive Field

[http://fomoro.com/tools/receptive-fields/index.html]



Example: simple line classification

Class O: vertical lines
Class 1: horizontal lines



Example: simple line classification

_ Z1, — W; OX + b; with 2 learned kernels w1, wo

RELU hz’ — maX(le' ; O)
1
Piol Sy ;m n, m]
fC 73 — WZ2 + C
S ft e—TZ3
ortmax Yi =
Zf:]- e—TZ3k

parameters Wi, wo, b, by, W, cC



Network training and evaluation

Training

Testing
3/10000 misclassified




Network visualization

Ox9 learned kernels:

Wi DFT V W DFT 1%

fc layer learned weight:

- 283 —2.36
W= - —0.60 1.14




Out of domain generalization

Out of domain test samples are classified correctly

0




|[dentitying vulnerabllity

» Modulation: multiplying image with sinusoidal wave moves spectral content horizontally

DFT v DFT y

* All lines with sinusoidal texture are misclassified




Analysis to run when training a large system

Training and evaluation

Visualize and understand the network
Out of domain generalization
ldentifying vulnerability



Some networks

... and what makes them work
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ImageNet Classification Error (Top 5)

2011 (XRCE)



2012: AlexNet

ImageNet Classification Error (Top 5) 5 conv. layers

30,0

| 11x11 conv, 96, /4, pool/2 |

 /

| 5x5 conv, 256, pool/2 |

25,0

20,0

| 3x3 conv, 384 |

3x3 conv, 384

| 3x3 conv, 256, pool/2 \

| fc, 4096 |

| fc, 4096 |

| fc, 1000 |

15,0

10,0

50

0,0 T T
2011 (XRCE) 2012 (AlexNet) Error: 16.4%

[Krizhevsky et al: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]



Alexnet — [Krizhevsky et al. NIPS 2012]

[227x227x3] INPUT

11x11 conv, 96, /4, pool/2

\

5x5 conv, 256, pool/2

\

3x3 conv, 384

\ 4

3X3 conv, 384

\ /

3x3 conv, 256, pool/2

\ 4

fc, 4096

\

fc, 4096

\ 4

fc, 1000

27X27x256
13x13x256

13x13x256

Jyayyas

55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
27x27x96] MAX POOL1: 3x3 filters at stride 2
27x27x96] NORM1: Normalization layer

CONV?2: 256 5x5 filters at stride 1, pad 2
MAX POOQOLZ2: 3x3 filters at stride 2
NORMZ2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)



11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2
3x3 conv, 384
3x3 conv, 384
3x3 conv, 256, pool/2
fc, 4096

fc, 4096

fc, 1000

What filters are learned?



What filters are learned?




Get to know your units

i
I
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x

11x11 convolution kernel
(3 color channels)




Get to know your units




Get to know your units

Afy




Get to know your units




Get to know your units

Afy

H




Get to know your units

Afy




Get to know your units

Afy




Get to know your units
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\

[Hubel and Wiesel 59]

Electrical signal

from brain R
Recording electrode — s W
Visual area
of brain

oriented filter

[Slide from Andrea Vedaldi]
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30,0

25,0

20,0

15,0

10,0

5,0

0,0 -

ImageNet Classification Error (Top 5)

lllt

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG)

2014: VGG
16 conv. layers

3x3 conv, 64

v

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

\

3x3 conv, 256

\

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

v

3x3 conv, 512

v

3x3 conv, 512

\

3x3 conv, 512, pool/2

3x3 conv, 512

v

3x3 conv, 512

v

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

v

fc, 4096

v

fc, 1000

Error: 7.3%

[Simonyan & Zisserman: Very Deep Convolutional Networks
for Large-Scale Image Recognition, ICLR 2015]



VGG-Net [Simonyan & Zisserman, 2015}

2014: VGG
16 conv. layers

Main developments

e Small convolutional kernels: only 3x3

e [ncreased depth (5 -> 16/19 layers)

I e Pt BT Al P AT R ATl P Dtls P

Error: 7.3%



Chaining convolutions
3x3 3x3

OI=

5x5

25 coefficients, but only
18 degrees of freedom

9 coefficients, but only
6 degrees of freedom.
Only separable filters... would this be enough?
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10,0 -

50 -
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ImageNet Classification Error (Top 5)

|

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG)



30,0 -

25,0 -

20,0 -

15,0 -

50 -

0‘0 .

ImageNet Classification Error (Top 5)

2016: ResNet
>100 conv. layers

2011 (XRCE)

2012 (AlexNet)

2013 (ZF)

B O L

2014 (VGG) 2014 Human 2015 (ResNet)
(GoogleNet)

Error: 3.6%

[He et al: Deep Residual Learning for Image Recognition, CVPR 2016]



2016: ResNet

A0 con lyers ResNet [He et al, 2016}

Main developments

* Increased depth possible
through residual blocks

X
weight layer

relu

X

weight layer

SULUBBUUELU LS UUEULUULEEBUSLLVBEEELLEYY

identity

SyLLYY

Errof: 3.6%



Residual Blocks

weight layer

X
identity



Residual Blocks

. Why do they work?
!
F(x) _1—Iwelght Iraeys\ e Gradients can propagate faster
welght layer / dentity (via the identity mapping)
F(x) + x

relu

e \Within each block, only small
residuals have to be learned



H
Vlake them bigger .

=,

> >100 conv. layers
-
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>
3
GooglLeNet é
22 conv. layers =2
VGG i =
AlexNet 16 conv. layers 3
5 conv. layers | =
| T 5
chdmgad - _%
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2012 2013 2014 2015 2016




Some debugging advice



Other good things to know

 Check gradients numerically by finite differences
* \Visualize hidden activations — should be uncorrelated and high variance

samples

hidden unit

Good training: hidden units are sparse across samples and across features.

[Derived from slide by Marc’Aurelio Ranzato]



Other good things to know

 Check gradients numerically by finite differences
* \Visualize hidden activations — should be uncorrelated and high variance

z
-
L
r

q

hidden unit

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

[Derived from slide by Marc’Aurelio Ranzato]



Other good things to know

 Check gradients numerically by finite differences
e Visualize hidden activations — should be uncorrelated and high variance
e Visualize filters

BAD
e AN EEIEE
ARl
AR A
AN B30
AN
PRI AR
BlANR AN
P 43380 2 10
too noisy too lack

correlated structure
Good training: learned filters exhibit structure and are uncorrelated.

[Derived from slide by Marc’Aurelio Ranzato]



Transformers

Convnets in Disguise



Enduring principles:
1. Chop up signal into patches (divide and conquer)
2. Process each patch identically (and in parallel)



9. CNNs and Spatial Processing

* How to use deep nets for images

* New layer types: convolutional, pooling

* Feature maps and multichannel representations
* Popular architectures: Alexnet, VGG, Resnets

e (Getting to know learned filters

e Unit visualization



