

6.8300/6.8301 Advances in Computer Vision

Vincent Sitzmann, Mina Lukovic Konacovic, Bill Freeman

Figure 1. Stimulus presentation scheme. The stimuli were originally calibrated to be seen at a distance of 150 cm in a 19" display.

Campbell & Robson chart

What do you think you should see when looking at this image?

$\mathbf{I}[n,m] = A[n]\sin(2\pi f[m]m/M)$

Things that are very close and/or large are hard to see Things far away are hard to see

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Today: A collection of useful filters in space and time, and aliasing.

Low-pass filters

Band-pass filters

Low pass-filters

Box filter

 $h_{N,M}[n,m] = \begin{cases} 1 & \text{if } -N \le n \le N \text{ and } -M \le m \le M \\ 0 & \text{otherwise} \end{cases}$

2M+1

Box filter

256X256

What does it do?

- Achieve smoothing effect (remove sharp features)

mean	
-21	
mean	

256X256

• Replaces each pixel with an average of its neighborhood

b2[n] versus the 3-tap box filter

Which one is a better low-pass filter?

 $[1, 1, 1] \cap [\dots, 1, -1, 1, -1, 1, -1, \dots] = [\dots, -1, 1, -1, 1, -1, 1, \dots]$ $[1, 2, 1] \cap [..., 1, -1, 1, -1, 1, -1, ...] = [..., 0, 0, 0, 0, 0, 0, ...]$

b2[n] vs h1[n]

Gaussian filter

In the continuous domain:

Gaussian filter

 $g(x, y; \sigma) =$

Discretization of the Gaussian:

$$\frac{1}{2\pi\sigma^2}\exp{-\frac{x^2+y^2}{2\sigma^2}}$$

At 3σ the amplitude of the Gaussian is around 1% of its central value

 $g[m,n;\sigma] = \exp{-\frac{m^2 + n^2}{2\sigma^2}}$

 $g[m,n;\sigma] = \exp{-\frac{m^2 + n^2}{2\sigma^2}}$

Scale

Gaussian filter for low-pass filtering

Properties of the Gaussian filter

 $g(x, y; \sigma) = \frac{1}{2\sigma}$

- The n-dimensional Gaussian is the only completely circularly symmetric operator that is separable.
- The (continuous) Fourier transform of a Gaussian is another Gaussian

$$\frac{1}{\pi\sigma^2}\exp-\frac{x^2+y^2}{2\sigma^2}$$

 $G(u, v; \sigma) = \exp(-2\pi^2(u^2 + v^2)\sigma^2)$

Properties of the Gaussian filter

 $g(x, y; \sigma) = \frac{1}{2\sigma}$

The convolution of two n-dimensional Gaussians is an n-dimensional Gaussian.

 $g(x, y; \sigma_1) \circ g(x, y)$

where the variance of the result is the sum

$$\sigma_3^2 = \sigma_1^2 +$$

(it is easy to prove this using the FT of the Gaussian)

$$\frac{1}{\pi\sigma^2}\exp-\frac{x^2+y^2}{2\sigma^2}$$

$$\sigma_2$$
; σ_2) = $g(x, y; \sigma_3)$

$$\sigma_2^2$$

Binomial filter

the gaussian coefficients using only integers.

The simplest blur filter (low pass) is

Binomial filters in the family of filters obtained as successive convolutions of [1 1]

- Binomial coefficients provide a compact approximation of

 - 1 1

Binomial filter

$b_2 = [1 \ 1] \circ [1 \ 1] = [1 \ 2 \ 1]$ $b_3 = [1 1] \circ [1 1] \circ [1 1] = [1 3 3 1]$

 $b_1 = [1 \ 1]$

Binomial filter

 b_1 b_2 1 2 1 3 b_3 6 b_4 4 b_5 1 15 20 b_6 1 6 35 35 21 21 b_7 b_8

 $\sigma_1^2 = 1/4$ $\sigma_2^2 = 1/2$ $\sigma_{3}^{2} = 3/4$ $\sigma_{4}^{2} = 1$ $\sigma_{5}^{2} = 5/4$ $\sigma_{6}^{2} = 3/2$ $\sigma_{7}^{2} = 7/4$

- Sum of the values is 2ⁿ
- The variance of b_n is $\sigma^2 = n/4$
- The convolution of two binomial filters is also a binomial filter

With a variance:

 $\sigma_n^2 + \sigma_m^2 = \sigma_{n+m}^2$

gaussian)

Properties of binomial filters

- $b_n \circ b_m = b_{n+m}$
- These properties are analogous to the gaussian property in the continuous domain (but the binomial filter is different than a discretization of a

B2[n]

$b_{2,2} = b_{2,0} \circ b_{0,2} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

What about the opposite of blurring?

Hybrid Images

Oliva & Schyns

Hybrid Images

Hybrid Images

http://cvcl.mit.edu/hybrid_gallery/gallery.html

DR(MADRS)

High pass-filters

Finding edges in the image

Edge strength

Edge orientation:

Edge normal:

Image gradient:

$$\nabla \mathbf{I} = \left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right)$$

Approximation image derivative:

$$\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y) - \mathbf{I}(x - 1, y)$$

 $E(x,y) = |\nabla \mathbf{I}(x,y)|$

 $\theta(x, y) = \angle \nabla \mathbf{I} = \arctan \frac{\partial \mathbf{I} / \partial y}{\partial \mathbf{I} / \partial x}$ $\mathbf{n} = \frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}$

[-1, 1]

h[m,n]

g[m,n]

$\begin{bmatrix} -1 & 1 \end{bmatrix}$ $\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y) - \mathbf{I}(x - 1, y)$

f[m,n]

g[m,n]

[-1 1]^T

[-1, 1]⊤

h[m,n]

=

f[m,n]

$d_0 = [1, -1]$ $f \circ d_0 = f[n] - f[n-1]$

$d_1 = [1, 0, -1]/2$ $f \circ d_1 = \frac{f[n+1] - f[n-1]}{2}$

Discrete derivatives

Discrete derivatives

Discrete derivatives

Derivatives

We want to compute the image derivative: $\frac{\partial f(x,y)}{\partial x}$ If there is noise, we might want to "smooth" it with a blurring filter $\frac{\partial f(x,y)}{\partial x} \circ g(x,y)$

But derivatives and convolutions are linear and we can move them around:

$$\frac{\partial f(x,y)}{\partial x} \circ g(x,y)$$

 $= f(x, y) \circ \frac{\partial g(x, y)}{\partial x}$

Gaussian derivatives $g(x, y; \sigma) = \frac{1}{2\pi\sigma^2} \exp{-\frac{x^2 + y^2}{2\sigma^2}}$

The continuous derivative is:

- $g_x(x,y;\sigma) = \frac{\partial g(x,y;\sigma)}{\partial x} =$

 - $= \frac{-x}{\sigma^2} g(x, y; \sigma)$

In general: $g_{x^{n},y^{m}}(x,y;\sigma) = \frac{\partial^{n+m}g(x,y)}{\partial x^{n}\partial y^{m}} = \left(\frac{-1}{\sigma\sqrt{2}}\right)^{n+m} H_{n}\left(\frac{x}{\sigma\sqrt{2}}\right) H_{m}\left(\frac{y}{\sigma\sqrt{2}}\right) g(x,y;\sigma)$

Gaussian derivatives

 $g(x, y; \sigma) = \frac{1}{2\pi\sigma^2} \exp{-\frac{x^2 + y^2}{2\sigma^2}}$

 $g_{x}(x,y) = \frac{-x}{2\pi\sigma^{4}} \exp{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$

Gaussian Scale

Derivatives of Gaussians: Scale

Orientation

$$g_x(x,y) = \frac{\partial g(x,y)}{\partial x} = \frac{-x}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$g_{y}(x,y) = \frac{\partial g(x,y)}{\partial y} = \frac{-y}{2\pi\sigma^{4}}e^{-\frac{x^{2}}{2\sigma^{4}}}$$

Orientation

$$g_x(x,y) = \frac{\partial g(x,y)}{\partial x} = \frac{-x}{2\pi o}$$

What about other orientations not axis aligned?

 $g_{y}(x,y) = \frac{\partial g(x,y)}{\partial y} = \frac{-y}{2\pi\sigma^{4}}e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$

Orientation

$$g_x(x,y) = \frac{\partial g(x,y)}{\partial x} = \frac{-x}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}} \int_{0}^{1} \int_{0}^{1}$$

The smoothed directional gradient is a linear combination of two kernels

$$u^T \nabla g \otimes I = (\cos(\alpha)g_x(x,y) + \sin(\alpha)g_y(x,y)) \otimes I(x,y) =$$

Any orientation can be computed as a linear combination of two filtered images

$$= \cos(\alpha)g_x(x,y) \otimes I(x,y) + \sin(\alpha)g_y(x,y) \otimes I(x,y)$$

Steereability of gaussian derivatives, Freeman & Adelson 92

+

 $\cos(\alpha)$

Example: "steering" to 45°

Steereability of gaussian derivatives, Freeman & Adelson 92

Continuous world

Aliasing

Let's start with this continuous image (it is not really continuous...)

52×64

Aliasing

103×128

26×32

Both waves fit the same samples. Aliasing consists in "perceiving" the red wave when the actual input was the blue wave.

Aliasing

Red curve is the signal: sinusoid + constant

Blue shows sampled signal

spatial domain

103×128

↓ ^{*w*} *y* $w_{\mathcal{X}}$

frequency domain 52×64

26×32

Aliasing

Antialising filtering

Before sampling, apply a low pass-filter to aliasing: "blur before you subsample"

103×128

Without antialising filter.

remove all the frequencies that will produce

52×64

26×32

- Temporal filtering
 - temporal filters, to measure motion.

• Motion illusion, involving aliasing, addressing whether humans match spatial patterns, or use

Temporal filtering

why filter videos over time?

m

Sequences

Sequences

A box moving with speed v_x

Global constant motion

A global motion of the image can be written as:

 $f(x, y, t) = f_0($

Where:

$$(x - v_x t, y - v_y t)$$

$$f_0(x,y) = f(x,y,0)$$

 $f(x,y,t) = f_0(x - v_x t, y - v_y t)$ $F(w_x, w_y, w_t) = F_0(w_x, w_y)\delta(w_t + v_x w_x + v_y w_y)$

Temporal Gaussian

Spatio-temporal Gaussian

t=-3

t=-2

t=-1

t=0

Spatio-temporal Gaussian

How could we create a filter that keeps sharp objects that move at some velocity (vx, vy) while blurring the rest?

$$g_{v_x,v_y}(x,y,t) =$$

 $=g(x-v_xt,y-v_yt,t)$

Quadrature pair of Gabor filters

 $\psi_{c}(x,y) = e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}} \cos(2\pi u_{0}x)$

Using phase changes of local Gabor filters to analyze or generate motion

$$\psi_{c}(x,y) = e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}} \cos(2\pi u_{0}x + \phi t)$$

Space-time plot of the a slice through the patio-temporal filter of the previous slide

$$\psi_{c}(x,y) = e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} \cos(2\pi u_{0}x + \phi t)$$

t

Spatio-temporal sampling illusion, due to Edward Adelson and Jim Bergen

Evidence for filter-based analysis of motion in the human visual system shown via spatio-temporal visual illusion based on sampling

Two potential theories for how humans compute our motion perceptions:

(a) We match the pattern in the image that we see at one moment and compare it with what we see at subsequent times.
(b) We use spatio-temporal filters to measure spatio-temporal energy in order to measure local motion.

This illusion favors one theory over the other.

Visual signal (this "video" is static)

temporal frequency

space

time

Square wave Fourier components

Using Fourier series we can write an ideal square wave as an infinite series of the form

$$\begin{aligned} x_{\text{square}}(t) &= \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left((2k-1)2\pi ft\right)}{(2k-1)} \\ &= \frac{4}{\pi} \left(\sin(2\pi ft) + \frac{1}{3}\sin(6\pi ft) + \frac{1}{5}\sin(10\pi ft) + \cdots \right). \end{aligned}$$

A square wave is an infinite sum of sinusoids

The pattern moves to the left

spatial frequency	Note that the dominant orientation of a low-pass filtered version of the space-time image is in the opposite orientation, implying motion to the right, due to the aliased Fourier components inside the blue circle.		
space	The aliased, strongest Fourier component moves to the right	space	low-pass filtered
	time		

blend over the two conditions

fraction of square wave fundamental frequency

faster display speed

faster display speed

fast blended...

lecture summary

- We have "inverted U shaped" sensitivity to spatial frequencies, peaking at 6 cycles per degree.
- We discussed ways to filter out different spatial frequency components of an image.
- Aliasing: "blur before you subsample".
- Spatio-temporal filtering enables motion analysis.
- Motion illusion gives evidence some temporal filtering mechanisms are involved in our motion processing.