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Linear Filters



2



Campbell & Robson chart

Let’s define the following image:

With:

What do you think you should see when looking at this image?
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Contrast Sensitivity Function
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Blackmore & Campbell (1969)
Maximum sensitivity


~ 6 cycles / degree of visual angle

Low High

Things far away 
are hard to see

Things that are very close 
and/or large are hard to see
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  Today: A collection of useful filters in space and 
time, and aliasing.
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Low-pass filters Band-pass filters
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Low pass-filters



Box filter
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Box filter
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=1
21X21

256X256 256X256

What does it do?

• Replaces each pixel with an average of its neighborhood

• Achieve smoothing effect (remove sharp features)

mean

mean



b2[n] versus the 3-tap box filter
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[1  2  1]

[1  1  1]

Which one is a better low-pass filter?
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2  +  2 cos(2π u/20)

1  +  2 cos(2π u/20)



b2[n] vs h1[n]
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[…, 0, 0, 0, 0, 0, 0, …][1, 2, 1]   […, 1, -1, 1, -1, 1, -1, …]  =  

[…, -1, 1, -1, 1, -1, 1, …][1, 1, 1]   […, 1, -1, 1, -1, 1, -1, …]  =  



Gaussian filter
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In the continuous domain:



Gaussian filter
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Discretization of the Gaussian:
 At 3σ  the amplitude of the Gaussian is around 1% of its central value



Scale
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Gaussian filter for low-pass filtering
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Dali



Properties of the Gaussian filter

•  The n-dimensional Gaussian is the only completely 
circularly symmetric operator that is separable.


• The (continuous) Fourier transform of a Gaussian is 
another Gaussian
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Properties of the Gaussian filter

• The convolution of two n-dimensional Gaussians is 
an n-dimensional Gaussian.

19

 where the variance of the result is the sum

(it is easy to prove this using the FT of the Gaussian)



Binomial filter

Binomial coefficients provide a compact approximation of 
the gaussian coefficients using only integers.
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The simplest blur filter (low pass) is 

Binomial filters in the family of filters obtained as

successive convolutions of [1 1]

[1  1]



Binomial filter
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[1 1]    [1 1] = [1 2 1]

[1 1]    [1 1]    [1 1] = [1 3 3 1]

b1  =  [1  1]

b2  =

b3  =



Binomial filter
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Properties of binomial filters

• Sum of the values is 2n


• The variance of bn is

• The convolution of two binomial filters is 

also a binomial filter
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With a variance:

These properties are analogous to the gaussian property in the continuous 
domain (but the binomial filter is different than a discretization of a 
gaussian)



B2[n]
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What about the opposite of blurring?
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Gaussian filter

Laplacian filter
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Laplacian filter

Gaussian filter
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Hybrid Images
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Oliva & Schyns



Hybrid Images
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Hybrid Images
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32http://cvcl.mit.edu/hybrid_gallery/gallery.html
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High pass-filters



Finding edges in the image
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Image gradient:

Approximation image derivative:

Edge strength

Edge orientation:

Edge normal:



[-1 1]
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g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]



[-1 1]T
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g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]T



Discrete derivatives
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Discrete derivatives
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Discrete derivatives
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Derivatives
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We want to compute the image derivative:

If there is noise, we might want to “smooth” it with a blurring filter

But derivatives and convolutions are linear and we can move them 
around:



Gaussian derivatives
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The continuous derivative is:



Gaussian derivatives
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gx(x,y)

In general:



Gaussian Scale
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σ=2 σ=4 σ=8



Derivatives of Gaussians: Scale
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σ=2 σ=4 σ=8



Orientation
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Orientation

46What about other orientations not axis aligned?



Any orientation can be computed as a linear combination of two filtered images

The smoothed directional gradient is a linear combination of two kernels

Steereability of gaussian derivatives, Freeman & Adelson 92

Orientation
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cos(α) +sin(α) =

Steereability of gaussian derivatives, Freeman & Adelson 92

Example:  “steering” to
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45∘

cos(α) +             sin(α) =



Sampling



Sampling
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Continuous world

Pixels



Sampling
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Sampling
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Aliasing
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Let’s start with this continuous image (it is not really continuous…)



Aliasing
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Aliasing

55

Both waves fit the same samples. Aliasing consists in “perceiving” 
the red wave when the actual input was the blue wave. 
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Red curve is the signal:  sinusoid + constant

Blue shows sampled signal
spatial 

domain
frequency 
domain

sampled at Nyquist frequency

signal

sampled signal

baseband spectrum
replicated spectra
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Red curve is the signal:  sinusoid + constant

Blue shows sampled signal
spatial 

domain
frequency 
domain

sampled at Nyquist frequency

signal

sampled signal

baseband spectrum
replicated spectra
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Red curve is the signal:  sinusoid + constant

Blue shows sampled signal
spatial 

domain
frequency 
domain

sampled at Nyquist frequency

signal

sampled signal

baseband spectrum
replicated spectra
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Red curve is the signal:  sinusoid + constant

Blue shows sampled signal
spatial 

domain
frequency 
domain

sampled at Nyquist frequency

signal

sampled signal

baseband spectrum
replicated spectra
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Red curve is the signal:  sinusoid + constant

Blue shows sampled signal
spatial 

domain
frequency 
domain

sampled at Nyquist frequency

signal

sampled signal

baseband spectrum
replicated spectra

aliased 
components



Aliasing

spatial 
domain

frequency 
domain



Antialising	filtering
Before	sampling,	apply	a	low	pass-filter	to	
remove	all	the	frequencies	that	will	produce	
aliasing:	“blur	before	you	subsample"

Without antialising 
filter.

With antialising 
filter.



• Temporal	filtering


• Motion	illusion,	involving	aliasing,	addressing	
whether	humans	match	spatial	patterns,	or	use	
temporal	filters,	to	measure	motion.



Temporal	filtering

why	filter	videos	over	time?



Sequences

time



Sequences

Cube size = 128x128x90



Cube size = 128x128x90

Sequences



A	box	moving	with	speed	vx

t

f (t) vx



Global	constant	motion

A global motion of the image can be written as:

Where:

(vx,vy)





Temporal	Gaussian

This filter keeps stationary 
things sharp, and blurs 
moving things.



Spatio-temporal	Gaussian



Spatio-temporal	Gaussian
How could we create a filter that keeps sharp objects that move 
at some velocity (vx , vy) while blurring the rest?









Quadrature	pair	of	Gabor	filters

U0=0.1

€ 

ψc (x,y) = e
−
x 2 +y 2

2σ 2 cos 2πu0x( )

€ 

ψs(x,y) = e
−
x 2 +y 2

2σ 2 sin 2πu0x( )



Using phase changes of local Gabor filters to 
analyze or generate motion
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2σ 2 cos 2πu0x( )+φ t)



Space-time plot of the a slice through the 
patio-temporal filter of the previous slide
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ψc (x,y) = e
−
x 2 +y 2

2σ 2 cos 2πu0x( )+φ t)



Spatio-temporal sampling illusion, due to 
Edward Adelson and Jim Bergen
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Evidence for filter-based analysis of motion in the 
human visual system shown via spatio-temporal 

visual illusion based on sampling
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Two potential theories for how humans compute our motion perceptions:

(a) We match the pattern in the image that we see at one moment and compare 
it with what we see at subsequent times.

(b) We use spatio-temporal filters to measure spatio-temporal energy in order to 
measure local motion.

This illusion favors one theory over the other.
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Square wave Fourier 
components
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http://en.wikipedia.org/wiki/Square_wave
http://en.wikipedia.org/wiki/Square_wave


filters to analyze motion
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A square wave is an infinite sum of sinusoids
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low-pass filtered

Note that the dominant 
orientation of a low-pass 
filtered version of the 
space-time image is in the 
opposite orientation, 
implying motion to the 
right, due to the aliased 
Fourier components inside 
the blue circle.

The 
pattern 

moves to 
the left

The aliased, strongest  
Fourier component 
moves to the right
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blend over the two conditions
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fraction of square wave 
fundamental frequency



faster display speed
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faster display speed



fast blended…
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lecture	summary

• We	have	“inverted	U	shaped”	sensitivity	to	spatial	
frequencies,	peaking	at	6	cycles	per	degree.


• We	discussed	ways	to	filter	out	different	spatial	frequency	
components	of	an	image.


• Aliasing:		“blur	before	you	subsample”.


• Spatio-temporal	filtering	enables	motion	analysis.


• Motion	illusion	gives	evidence	some	temporal	filtering	
mechanisms	are	involved	in	our	motion	processing.
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