## Lecture 4

Spatial and Temporal

6.8300/6.8301 Advances in Computer Vision

## $|||||||||||\mid$



Figure 1. Stimulus presentation scheme. The stimuli were originally calibrated to be seen at a distance of 150 cm in a $19^{\prime \prime}$ display.

## Campbell \& Robson chart

Let's define the following image:


What do you think you should see when looking at this image?
$\mathbf{I}[n, m]=A[n] \sin (2 \pi f[m] m / M)$


## Contrast Sensitivity Function

Blackmore \& Campbell (1969)
Maximum sensitivity
~ $\mathbf{6}$ cycles / degree of visual angle


Things that are very close and/or large are hard to see

Things far away are hard to see
$1234567891011121314151617181920$

Today: A collection of useful filters in space and time, and aliasing.

Low-pass filters
Band-pass filters

Low pass-filters

## Box filter

$$
\begin{aligned}
& h_{N, M}[n, m]= \begin{cases}1 & \text { if }-N \leq n \leq N \text { and }-M \leq m \leq M \\
0 & \text { otherwise }\end{cases} \\
& \underbrace{(n[n] \text { with } N=1}_{n=0}
\end{aligned}
$$

## Box filter



256X256

## What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)


## b2[n] versus the 3 -tap box filter



[^0]

## b2[n] vs h1[n]

$[1,1,1] \circ[\ldots, 1,-1,1,-1,1,-1, \ldots]=[\ldots,-1,1,-1,1,-1,1, \ldots]$
$[1,2,1] \circ[\ldots, 1,-1,1,-1,1,-1, \ldots]=[\ldots, 0,0,0,0,0,0, \ldots]$

## Gaussian filter

In the continuous domain:

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

## Gaussian filter

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

Discretization of the Gaussian:
At $3 \sigma$ the amplitude of the Gaussian is around $1 \%$ of its central value

$$
g[m, n ; \sigma]=\exp -\frac{m^{2}+n^{2}}{2 \sigma^{2}}
$$

## Scale

$g[m, n ; \sigma]=\exp -\frac{m^{2}+n^{2}}{2 \sigma^{2}}$


Gaussian filter for low-pass filtering


## Properties of the Gaussian filter

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

- The n-dimensional Gaussian is the only completely circularly symmetric operator that is separable.
- The (continuous) Fourier transform of a Gaussian is another Gaussian

$$
G(u, v ; \sigma)=\exp -2 \pi^{2}\left(u^{2}+v^{2}\right) \sigma^{2}
$$

## Properties of the Gaussian filter

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

- The convolution of two n-dimensional Gaussians is an n-dimensional Gaussian.

$$
g\left(x, y ; \sigma_{1}\right) \circ g\left(x, y ; \sigma_{2}\right)=g\left(x, y ; \sigma_{3}\right)
$$

where the variance of the result is the sum

$$
\sigma_{3}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}
$$

(it is easy to prove this using the FT of the Gaussian)

## Binomial filter

Binomial coefficients provide a compact approximation of the gaussian coefficients using only integers.

The simplest blur filter (low pass) is
$\left[\begin{array}{ll}1 & 1\end{array}\right]$
Binomial filters in the family of filters obtained as successive convolutions of [1 1]

## Binomial filter

$$
\begin{gathered}
\mathrm{b}_{1}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
\mathrm{b}_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \circ\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \\
\mathrm{b}_{3}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \circ\left[\begin{array}{ll}
1 & 1
\end{array}\right] \circ\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 3
\end{array}\right]
\end{gathered}
$$

## Binomial filter



## Properties of binomial filters

- Sum of the values is $2^{n}$
- The variance of $\mathrm{b}_{\mathrm{n}}$ is $\sigma^{2}=n / 4$
- The convolution of two binomial filters is also a binomial filter

$$
b_{n} \circ b_{m}=b_{n+m}
$$

With a variance:

$$
\sigma_{n}^{2}+\sigma_{m}^{2}=\sigma_{n+m}^{2}
$$

These properties are analogous to the gaussian property in the continuous domain (but the binomial filter is different than a discretization of a

## B2[n]

$$
b_{2,2}=b_{2,0} \circ b_{0,2}=\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right] \circ\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

## What about the opposite of blurring?



Laplacian filter


Gaussian filter


Hybrid Images

Oliva \& Schyns


## Hybrid Images




## Hybrid Images





Copyright © 2007 Aude Oliva, MIT
http://cvcl.mit.edu/hybrid_gallery/gallery.html


High pass-filters

## Finding edges in the image

Image gradient:

$$
\nabla \mathbf{I}=\left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right)
$$

Approximation image derivative:

$$
\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y)-\mathbf{I}(x-1, y)
$$

Edge strength

$$
E(x, y)=|\nabla \mathbf{I}(x, y)|
$$

Edge orientation:

$$
\theta(x, y)=\angle \nabla \mathbf{I}=\arctan \frac{\partial \mathbf{I} / \partial y}{\partial \mathbf{I} / \partial x}
$$

Edge normal: $\quad \mathbf{n}=\frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}$

$$
\begin{gathered}
{\left[\begin{array}{cc}
-1 & 1
\end{array}\right]} \\
\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y)-\mathbf{I}(x-1, y)
\end{gathered}
$$


$\mathrm{g}[\mathrm{m}, \mathrm{n}]$
© $\quad[-1,1]$
$\mathrm{h}[\mathrm{m}, \mathrm{n}]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

## $\left[\begin{array}{ll}-1 & 1\end{array}\right]^{\top}$


$\mathrm{g}[\mathrm{m}, \mathrm{n}]$

f[m,n]

## Discrete derivatives

$$
\begin{aligned}
& d_{0}=[1,-1] \\
& \qquad f \circ d_{0}=f[n]-f[n-1] \\
& d_{1}=[1,0,-1] / 2 \\
& \quad f \circ d_{1}=\frac{f[n+1]-f[n-1]}{2}
\end{aligned}
$$

## Discrete derivatives



## Discrete derivatives



## Derivatives

We want to compute the image derivative:
$\frac{\partial f(x, y)}{\partial x}$
If there is noise, we might want to "smooth" it with a blurring filter $\frac{\partial f(x, y)}{\partial x} \circ g(x, y)$

But derivatives and convolutions are linear and we can move them around:

$$
\frac{\partial f(x, y)}{\partial x} \circ g(x, y)=f(x, y) \circ \frac{\partial g(x, y)}{\partial x}
$$

## Gaussian derivatives

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

The continuous derivative is:

$$
\begin{aligned}
g_{x}(x, y ; \sigma) & =\frac{\partial g(x, y ; \sigma)}{\partial x}= \\
& =\frac{-x}{2 \pi \sigma^{4}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}} \\
& =\frac{-x}{\sigma^{2}} g(x, y ; \sigma)
\end{aligned}
$$

## Gaussian derivatives

$$
\begin{aligned}
& g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}} \\
& g_{x}(x, y)=\frac{-x}{2 \pi \sigma^{4}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
\end{aligned}
$$

In general:

$$
g_{x^{n}, y^{m}}(x, y ; \sigma)=\frac{\partial^{n+m} g(x, y)}{\partial x^{n} \partial y^{m}}=\left(\frac{-1}{\sigma \sqrt{2}}\right)^{n+m} H_{n}\left(\frac{x}{\sigma \sqrt{2}}\right) H_{m}\left(\frac{y}{\sigma \sqrt{2}}\right) g(x, y ; \sigma)
$$

## Gaussian Scale



Derivatives of Gaussians: Scale


## Orientation

$$
\begin{aligned}
& g_{x}(x, y)=\frac{\partial g(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& g_{y}(x, y)=\frac{\partial g(x, y)}{\partial y}=\frac{-y}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
\end{aligned}
$$



## Orientation

$$
g_{x}(x, y)=\frac{\partial g(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \quad g_{y}(x, y)=\frac{\partial g(x, y)}{\partial y}=\frac{-y}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$



What about other orientations not axis aligned?

## Orientation

$$
g_{x}(x, y)=\frac{\partial g(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} g_{y}(x, y)=\frac{\partial g(x, y)}{\partial y}=\frac{-y}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

The smoothed directional gradient is a linear combination of two kernels

$$
u^{T} \nabla g \otimes I=\left(\cos (\alpha) g_{x}(x, y)+\sin (\alpha) g_{y}(x, y)\right) \otimes I(x, y)=
$$

Any orientation can be computed as a linear combination of two filtered images

$$
=\cos (\alpha) g_{x}(x, y) \otimes I(x, y)+\sin (\alpha) g_{y}(x, y) \otimes I(x, y)
$$

## Example: "steering" to $45^{\circ}$



## Sampling

## Sampling



## Sampling



## Sampling



## Aliasing



Let's start with this continuous image (it is not really continuous...)

## Aliasing



## Aliasing




Both waves fit the same samples. Aliasing consists in "perceiving" the red wave when the actual input was the blue wave.

## Red curve is the signal: sinusoid + constant

Blue shows sampled signal
spatial domain


frequency domain

Red curve is the signal: sinusoid + constant
Blue shows sampled signal
spatial domain


frequency domain


Red curve is the signal: sinusoid + constant
Blue shows sampled signal
spatial domain

frequency domain

sampled at Nyquist frequency $\qquad$



Red curve is the signal: sinusoid + constant
Blue shows sampled signal
spatial domain


frequency domain


sampled at Nyquist frequency $\qquad$





Red curve is the signal: sinusoid + constant
Blue shows sampled signal
sampled at Nyquist frequency $\qquad$
spatial domain









frequency domain
spatial domain


Aliasing

## Antialising filtering

Before sampling, apply a low pass-filter to remove all the frequencies that will produce aliasing: "blur before you subsample"


- Temporal filtering
- Motion illusion, involving aliasing, addressing whether humans match spatial patterns, or use temporal filters, to measure motion.

Temporal filtering


## Sequences


time

## Sequences



Cube size $=128 \times 128 \times 90$

## Sequences




Cube size $=128 \times 128 \times 90$

A box moving with speed $v_{x}$


## Global constant motion



A global motion of the image can be written as:

$$
f(x, y, t)=f_{0}\left(x-v_{x} t, y-v_{y} t\right)
$$

Where:

$$
f_{0}(x, y)=f(x, y, 0)
$$

$$
f(x, y, t)=f_{0}\left(x-v_{x} t, y-v_{y} t\right)
$$

$$
F\left(w_{x}, w_{y}, w_{t}\right)=F_{0}\left(w_{x}, w_{y}\right) \delta\left(w_{t}+v_{x} w_{x}+v_{y} w_{y}\right)
$$



## Temporal Gaussian

$$
g\left(x, y, t ; \sigma_{x}, \sigma_{t}\right)=\frac{1}{(2 \pi)^{3 / 2} \sigma_{x}^{2} \sigma_{t}} \exp -\frac{x^{2}+y^{2}}{2 \sigma_{x}^{2}} \exp -\frac{t^{2}}{2 \sigma_{t}^{2}}
$$



This filter keeps stationary things sharp, and blurs moving things.

## Spatio-temporal Gaussian



## Spatio-temporal Gaussian

How could we create a filter that keeps sharp objects that move at some velocity ( $\mathbf{v x}, \mathbf{v y}$ ) while blurring the rest?

$$
g_{v_{x}, v_{y}}(x, y, t)=g\left(x-v_{x} t, y-v_{y} t, t\right)
$$








## Quadrature pair of Gabor filters



Using phase changes of local Gabor filters to analyze or generate motion

$$
\psi_{c}(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \cos \left(2 \pi u_{0} x+\phi t\right)
$$

$$
\begin{aligned}
& \uparrow \\
& \mathrm{y}
\end{aligned}
$$

Space-time plot of the a slice through the patio-temporal filter of the previous slide

$$
\psi_{c}(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \cos \left(2 \pi u_{0} x+\phi t\right)
$$


$\qquad$

## Spatio-temporal sampling illusion, due to Edward Adelson and Jim Bergen

## Evidence for filter-based analysis of motion in the human visual system shown via spatio-temporal visual illusion based on sampling

Two potential theories for how humans compute our motion perceptions:
(a) We match the pattern in the image that we see at one moment and compare it with what we see at subsequent times.
(b) We use spatio-temporal filters to measure spatio-temporal energy in order to measure local motion.

This illusion favors one theory over the other.
spatial frequency

space
time


Visual signal (this "video" is static)
spatial frequency
Visual signal


time


## Square wave Fourier components

Using Fourier series we can write an ideal square wave as an infinite series of the form

$$
\begin{aligned}
x_{\text {square }}(t) & =\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) 2 \pi f t)}{(2 k-1)} \\
& =\frac{4}{\pi}\left(\sin (2 \pi f t)+\frac{1}{3} \sin (6 \pi f t)+\frac{1}{5} \sin (10 \pi f t)+\cdots\right) .
\end{aligned}
$$

A square wave is an infinite sum of sinusoids

spatial frequency

space
time



spatial frequency


Note that the dominant orientation of a low-pass filtered version of the space-time image is in the opposite orientation, implying motion to the right, due to the aliased Fourier components inside the blue circle.

The aliased, strongest
Fourier component
moves to the right


## a


blend over the two conditions

faster display speed


fast blended...


## lecture summary

- We have "inverted U shaped" sensitivity to spatial frequencies, peaking at 6 cycles per degree.
- We discussed ways to filter out different spatial frequency components of an image.
- Aliasing: "blur before you subsample".
- Spatio-temporal filtering enables motion analysis.
- Motion illusion gives evidence some temporal filtering mechanisms are involved in our motion processing.


[^0]:    Which one is a better low-pass filter?

