Lecture 2

Image formation

Imaging lecture

4 Imaging 5
4.1 Light interacting with surfaces 5
4.2 The Pinhole Camera and Image formation 6
4.2.1 Image formation by perspective projoction 8
4.2.2 Image formation by orthographic projection 8
1.3 Cameras with lenses 8
4.3.1 Lensmaker's formula 9
4.4 Cameras as linear systems 16
4.5 More general imagers 18
4.5.1 Corner camera 18

The structure of ambient light

The structure of ambient light

有

All light rays

Why don't we generate an image when an object is in front of a white piece of paper?

Why is there no picture appearing on the paper?

Let's check, do we get an image?

Let's check, do we get an image? No

To make an image, we need to have only a subset of all the rays strike the sensor or surface

The camera obscura The pinhole camera

image is inverted

Let's try putting different occluders in between the object and the sensing plane

light on wall past pinhole

Light through hole A

grocery bag pinhole camera

grocery bag pinhole camera

grocery bag pinhole camera

view from outside the bag
http://www.youtube.com/watch?v=FZyCFxsyx8o
view from inside the bag
http://youtu.be/-rhZaAM3F44

me, with GoPro

Recording from GoPro

Pinhole camera

Photograph by Abelardo Morell, 1991

Perspective projection

Figure 4.3: Perspective projection equations derived geometrically. From similar triangles, we have $y=-\frac{f}{Z} Y$.

Perspective projection

Perspective projection

image coordinates

Vanishing point

Vanishing point for this $3-\mathrm{d}$
line

Line in 3-space

$$
\begin{aligned}
& X(t)=X_{0}+a t \\
& Y(t)=Y_{0}+b t \\
& Z(t)=Z_{0}+c t
\end{aligned}
$$

Perspective projection of that line

$$
x(t)=\frac{f X}{Z}=\frac{f X_{0}+f a t}{Z_{0}+c t}
$$

$$
y(t)=\frac{f Y}{Z}=\frac{f Y_{0}+f b t}{Z_{0}+c t}
$$

In the limit as

$$
t \rightarrow \pm \infty
$$ we have (for $c \neq 0$):

$$
x(t \rightarrow \infty) \rightarrow \frac{f a}{c}
$$

$$
\begin{aligned}
& \text { This tells us that any set of parallel } \\
& \text { lines (same a, b, c parameters) project }
\end{aligned}
$$

$$
y(t \rightarrow \infty) \rightarrow \frac{f b}{c}
$$ to the same point (called the vanishing point).

Vanishing points

- Each set of parallel lines (=direction) meets at a different point
- The vanishing point for this direction
- Sets of parallel lines on the same plane lead to collinear vanishing points.

- The line is called the horizon for that plane

http://www.ider.herts.ac.uk/school/courseware/ graphics/two_point_perspective.html

What if you photograph a brick wall head-on?

Brick wall line in 3-space

$$
\begin{aligned}
& X(t)=X_{0}+a t \\
& Y(t)=Y_{0} \\
& Z(t)=Z_{0}
\end{aligned}
$$

Perspective projection of that line

$$
\begin{aligned}
& x(t)=\frac{f X}{Z}=\frac{f X_{0}+f a t}{Z_{0}} \\
& y(t)=\frac{f Y}{Z}=\frac{f Y_{0}}{Z_{0}}
\end{aligned}
$$

All bricks have same z_{0}. Those in same row have same y_{0}
Thus, a brick wall, photographed head-on, gets rendered as set of parallel lines in the image plane.

Other projection models: Orthographic projection

Approximation to this: telephoto lens with a very long focal length
How else might you make a camera with this projection?

Straw camera

(b)
(a)

Straw camera

Two camera projections

(2) Orthographic: $(X, Y, Z) \rightarrow(X, Y)$
(Straw camera)

which is perspective, which orthographic?

Perspective projection

Parallel (orthographic) projection

which is perspective, which orthographic?

Perspective projection

Parallel (orthographic) projection

What are the drawbacks of pinhole cameras?

A problem: pinhole camera images are dark, or require long exposures

Large aperture gives a brighter image, but at the price of sharpness

A lens allows a large aperture and a sharp image

Let's try putting different occluders in between the scene and the sensor plane

Influence of aperture size: with a small aperture, the image is sharp, but dim. A large aperture gives a bright, but blurry image.

A lens can focus light from one point in the world to one point on the sensor plane.

Images through large aperture, with and without lens present

Images through large aperture, with and without lens present

(a)

(b)

(d)

Light at a material interface

Light at a material interface

wavelength inversely
proportional
to index of refraction
geometry
$\lambda_{1} n_{1}=\lambda_{2} n_{2}$

Speed, and thus wavelength of light, scales inversely with n. This requires that plane waves bend, according to

Snell's law of refraction $n_{1} \sin \left(\alpha_{1}\right)=n_{2} \sin \left(\alpha_{2}\right)$ indices of refraction n_{1} n_{2}

Modern camera lens systems are designed by computer, using commercial programs such as Zemax. (Max was the name of the original programmer's dog, but was taken as a trademarked name, so they went with Zemax)

But let's design a very simple lens by hand...

OpticStudio

certst

High-Yield Optimization

Zemax

Snell's law, for small angles

$$
n_{1} \sin \left(\alpha_{1}\right)=n_{2} \sin \left(\alpha_{2}\right)
$$

For small angles,

$$
n_{1} \alpha_{1}=n_{2} \alpha_{2}
$$

what shape should we make a thin lens so that it will focus light?

with angles distorted for labeling clarity

Angle	Description	Relation	Reason
θ_{1}	initial angle from optical axis	$\theta_{1}=\frac{c}{a}$	small angle approx.
angle of refracted ray	Snell's law,		
θ_{2}	art front surface normal	$n \theta_{2}=\theta_{1}+\theta_{S}$	small angle approx.
θ_{3}	angle of refracted ray wrt back surface normal	$2 \theta_{S}=\theta_{2}+\theta_{3}$	symmetry of lens, thin lens approx.
$\theta_{4}+\theta_{S}$	angle of ray exiting lens wrt back surface normal	$n \theta_{3}=\theta_{4}+\theta_{S}$	Snell's law, small angle approx.
θ_{4}	final angle from optical axis	$\theta_{4}=\frac{c}{b}$	small angle approx.

left lens surface

What shape should we make a lens so that it will focus light?

Lensmaker's equation

For thin lenses, both parabolic and spherical shapes satisfy that constraint. For a spherical lens surface, curving according to a radius R, we have $\sin \left(\theta_{S}\right)=\frac{c}{R}$. For small angles θ_{S}, this reduces to

$$
\begin{equation*}
\theta_{S}=\frac{c}{R}, \tag{4.11}
\end{equation*}
$$

where R is the radius of the sphere, which has the desired property that $\theta_{S} \propto c$. Substituting Eq. (4.11) into the focusing condition, Eq. (4.10) yields the Lensmaker's Formula,

$$
\begin{array}{ll}
\theta_{S}=\frac{c}{2(n-1)}\left(\frac{1}{a}+\frac{1}{b}\right)
\end{array} \begin{aligned}
& \frac{1}{R}=\frac{1}{2(n-1)}\left(\frac{1}{a}+\frac{1}{b}\right) \\
& \text { from previous slide } \\
& \text { combine with 4.11 } \tag{4.12}
\end{aligned} \quad \frac{1}{a}+\frac{1}{b}=\frac{1}{f},
$$

where the lens focal length, f is

$$
\begin{equation*}
f=\frac{R}{2(n-1)} \tag{4.13}
\end{equation*}
$$

Note: (1) off-axis rays are focussed, too, and
(2) rays from infinity focus at a distance f
(3) Since light passes without bending through the center of the lens, a lens creates images with perspective projection.

$$
\frac{1}{a}+\frac{1}{b}=\frac{1}{f}
$$

Lens demonstration

- Verify:
- Focusing property
- Lens maker's equation

$$
\begin{aligned}
& \frac{1}{a}+\frac{1}{b}=\frac{1}{f} \\
& f=\frac{R}{2(n-1)}
\end{aligned}
$$

lens to laser pointer center of rotation $=23.5$ inches $=59.7 \mathrm{~cm}$
lens to wall $=12.5$ inches $=31.7 \mathrm{~cm}$
$1 / 59.7+1 / 31.7=1 / 20.7$

Lecture outline

4 Imaging 5
4.1 Light interacting with surfaces 5
4.2 The Pinhole Camera and Image formation 6
4.2.1 Image formation by perspective projoction 8
4.2.2 Image formation by orthographic projection 8
1.3 Cameras with lenses 8
4.3.1 Lensmaker's formula 9
4.4 Cameras as linear systems 16
4.5 More general imagers 18
4.5.1 Corner camera 18

Photometric properties of general imagers

Photometric properties of general imagers

Regularized matrix inverse

$$
\begin{equation*}
E=|\vec{y}-\mathbf{A} \vec{x}|^{2}-\lambda|\vec{x}|^{2} \tag{1.10}
\end{equation*}
$$

Setting the derivative of Eq. (1.10) with respect to the elements of the vector \vec{x} equal to zero, we have

$$
\begin{align*}
0 & =\nabla_{x}|\vec{y}-\boldsymbol{A} \vec{x}|^{2}+\nabla_{x} \lambda|\vec{x}|^{2} \tag{1.11}\\
& =\boldsymbol{A}^{T} \boldsymbol{A} \vec{x}-\boldsymbol{A}^{T} \vec{y}+\boldsymbol{\lambda} \vec{x} \tag{1.12}
\end{align*}
$$

or

$$
\begin{equation*}
\vec{x}=\left(\boldsymbol{A}^{T} \boldsymbol{A}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{A}^{T} \vec{y} \tag{1.14}
\end{equation*}
$$

See, e.g.: https://en.wikipedia.org/wiki/Matrix_calculus

system matrix, A , for pinhole imager

$$
\vec{y}=\mathbf{A} \vec{x}
$$

(c)
(a)

Figure 1.8
(a) Schematic drawing of a small-hole 1-d pinhole camera.(b) Visualization of imaging matrices: The imaging matrix relating scene intensities to sensor readings; the inverse of that matrix; the regularized inverse. For the small-pinhole imager, all three matrices are approximately identity matrices.

system matrix, A, for large aperture pinhole imager

(a)

Figure 1.9
(a) Large-hole 1-d pinhole camera. (b) Visualization of imaging matrices: The imaging matrix relating scene intensities to sensor readings; the inverse of that matrix; the regularized inverse. For the small-pinhole imager, all three matriees are approximately identity matrices.

system matrix, A, for an edge

$$
\vec{y}=\mathbf{A} \vec{x}
$$

Real-world occlusion-based camera: corner camera

Corner Camera 1-D Image Computation

Hidden scene

Video Frame

Trajectories of two people

time \qquad

Experiment Proof of Concept

Experimental Proof of Concept

Experimental Proof of Concept

Experimental Proof of Concept

Video Corresponding to 1-D Camera

Corner camera 1-d image computation

Input video image
mask images to read-out
1-d image of scene around the corner

1-D Corner Camera Output

- How many people?
- Where slowed down, where moved quickly?

$\stackrel{(1)}{E}$

1-D Corner Camera Output

- How many people?
- How fast is each person moving?

Additional Results

Paper ID: 1983

Summary

- Pinhole camera models the geometry of perspective projection
- Lenses gather light and form images
- We designed a lens
- Thin lens, spherical surfaces, first order optics
- Cameras as general linear systems.
- specified by transfer matrix relating illumination in world to recorded data.

