Lecture 18

Motion estimation

Deqing Sun (Google)

6.8300/6.8301 Advances in Computer Vision Vincent Sitzmann, Mina Konaković Luković, Bill Freeman

Credits

Some slides, images, and videos from

- Dr. Ce Liu@Microsoft
- Dr. Huaizu Jiang@Northeastern
- Dr. David Fouhey@UMich
- Dr. Justin Johnson@UMich
- Dr. Svetlana Lazebnik@UIUC
- Dr. Shree K. Nayar@Columbia
- Dr. Jia Deng@Princeton
- Dr. Ming-Hsuan Yang@UC Merced
- Dr. Rick Szeliski's book
- Book by Antonio, Phillip, and Bill

Suggestions from Dr. Bill Freeman, Dr. Rick Szeliski, Dr. Noah Snavely and Dr. Junhwa Hur

We live in a dynamic world

Perceiving, understanding and predicting motion is an important part of our daily lives

Sometimes motion is the only cue

Slide Credit: S. Lazebnik, but idea of random dot sterogram is due to B. Julesz

Sometimes motion is the only cue

Even impoverished data can create a strong percept

Even impoverished data can create a strong percept

We pay attention to motion

Alkazar's principles of misdirection

The key to misdirection lies in learning to control attention.

Principle 1 The audience will pay attention to what **moves**. ...

What doesn't move ... doesn't attract attention.

...

Content

- Classical approach
- Deep learning-based approach
- Applications: What is motion for?

Classical approach

Optical flow: 2D motion of every pixel

Input [Liu *et al.* CVPR'08]

Optical flow (2D motion vector)

Color key [Baker *et al.* IJCV'11]

Fundamental assumption: Brightness constancy

[Horn & Schunck Al'81]

$I_t(\mathbf{p}) \approx I_{t+1}(\mathbf{p} + \mathbf{w}_{\mathbf{p}})$

First image (t)

Second image (t+1)

Matching-based motion estimation

Similarity between a pixel in image 1 with pixels in image 2

$$\min_{\mathbf{w}_{\mathbf{p}}} \left(I_t(\mathbf{p}) - I_{t+1}(\mathbf{p} + \mathbf{w}_{\mathbf{p}}) \right)^2$$

Comparing pixel colors

x1

Aperture problem

Slide Credit: S.

Aperture problem

Slide Credit: S. Lazebnik

Aperture problem

Slide Credit: S. Lazebnik

Other invisible flow

Slide credit: D Fouhey & J Johnson

Other invisible flow

Slide credit: D Fouhey & J Johnson

What do you perceive?

Matching-based motion estimation

Similarity between a pixel in image 1 with pixels in image 2

$$\min_{\mathbf{w}_{\mathbf{p}}} \left(I_t(\mathbf{p}) - I_{t+1}(\mathbf{p} + \mathbf{w}_{\mathbf{p}}) \right)^2$$

Solving ambiguities: Lucas-Kanade

Similarity between a patch in image 1 with patches in image 2

• Pixels in a patch share the same (parametric) motion

$$\min_{\mathbf{w}_{\mathbf{p}}} \sum_{\mathbf{q} \in N_{p}} \left(I_{t}(\mathbf{q}) - I_{t+1}(\mathbf{q} + \mathbf{w}_{p}) \right)^{2}$$

Similarity between patches (cost volume)

Image 1

Cost volume (darker, more similar)

Effect of patch size

Issue: Brute force is too expensive

Image 2

Coarse-to-fine iterative estimation

Coarse-to-fine iterative estimation

How to use estimates from the upper level?

Coarse-to-fine iterative estimation

Current estimate \downarrow $I_{t+1}(\mathbf{q} + \mathbf{w}_{p}) = I_{t+1}(\mathbf{q} + \mathbf{w}_{p}^{k} + \delta \mathbf{w}_{p})$ \uparrow Small increment

Warped image

$$I_{\mathrm{w}}(\mathbf{q}) = I_{t+1}(\mathbf{q} + \mathbf{w}_{\mathrm{p}}^{k})$$

Warping operation

 $I_{\mathrm{w}}(\mathbf{q}) = I_{t+1}(\mathbf{q} + \mathbf{w}_{\mathrm{p}}^{k})$

Input images t and t+1

Image *t* and warped image

Optical Flow Results

Lucas-Kanade without pyramids

Fails in areas of large motion

Issue: Motion boundaries

Pixels in a patch share the same (parametric) motion

$$\min_{\mathbf{w}_{\mathbf{p}}} \sum_{\mathbf{q} \in N_{p}} \left(I_{t}(\mathbf{q}) - I_{t+1}(\mathbf{q} + \mathbf{w}_{p}) \right)^{2}$$

Solving ambiguities: Horn & Schunck

Smoothness: neighboring pixels have similar motion

Optimization/energy minimization

[Horn & Schunck Al'81]

$$E(\mathbf{w}) = \sum_{\mathbf{p}} |l_t(\mathbf{p}) - l_{t+1}(\mathbf{p} + \mathbf{w}_{\mathbf{p}})|^2 + \lambda \sum_{\mathbf{q} \in N_{\mathbf{p}}} |\mathbf{w}_{\mathbf{p}} - \mathbf{w}_{\mathbf{q}}|^2$$

Horn & Schunck

Input

Horn & Schunck

Ground truth

Color key [Baker *et al.* IJCV'11]

Improving Horn & Schunck

[Sun et al. CVPR'10, IJCV'14]

$$E(\mathbf{w}) = \sum_{\mathbf{p}} \left| I_t(\mathbf{p}) - I_{t+1}(\mathbf{p} + \mathbf{w}_{\mathbf{p}}) \right|^2 + \lambda \sum_{\mathbf{q} \in N_{\mathbf{p}}} \left| \mathbf{w}_{\mathbf{p}} - \mathbf{w}_{\mathbf{q}} \right|^2 \overset{\diamond}{\to} \overset{\diamond}{\to} \overset{\diamond}{\to} \overset{\diamond}{\to} \overset{\diamond}{\to}$$

Improving Horn & Schunck

[Sun et al. CVPR'10, IJCV'14]

Challenges for classical methods

Large motion Motion blur Occlusions Lighting changes Noise...

Hard to modify objective function and even harder to optimize it

Content

- Classical approach
 - Constancy assumption -> matching by comparison (cost volume)

Image 1

Image 2

Cost volume

Content

- Classical approach
 - Constancy assumption -> matching by comparison (cost volume)
 - Coarse-to-fine, warping-based iterative estimation

Input images t and t+1

Image *t* and warped image

Deep learning-based approach

Supervised optical flow

[Dosovitskiy et al. ICCV'15]

What is the training/test data?

Two widely-used benchmarks for optical flow

Sintel (Blender movie)

KITTI (driving)

Supervised optical flow

[Dosovitskiy et al. ICCV'15]

What is the network/architecture?

FlowNetS(imple): Mapping from images to flow

[Dosovitskiy et al. ICCV'15]

FlowNetC(orrelation): Compare features

[Dosovitskiy et al. ICCV'15]

Promising but behind contemporary state of the art

[Dosovitskiy *et al.* ICCV'15]

FlowNet2: Scaling up by stacking up FlowNetS/C [Ilg et al. CVPR'17]

Significant improvement

Trade-off between accuracy and running time

FlowNet2: Ilg *et al*. CVPR'17 S2F-IF: Yang & Soatto CVPR'17 FlowFieldsCNN: Bailer *et al*. CVPR'17 MRFlow: Wulff *et al*. CVPR'17 DCFlow: Xu *et al*. CVPR'17

Trade-off between accuracy and size for CNN methods

Inspired by classical approach

Pyramid of learnable features

Compute cost volume by correlation

[Dosovitskiy et al. FlowNet ICCV'15]

Mapping cost volume to optical flow

Architectures matter

Flow Leaderboard

Final results of the ROB 2018 Challenge. New submissions will be accepted after CVPR 2018.

Y	Method	Middlebury (Detailed subrankings)	KITTI (Detailed subrankings)	MPI Sintel (Detailed subrankings)	HD1K (Detailed subrankings)
1	PWC-Net_ROB	2	2 PWC-Net: CNNs for Optical Flow Using Py	2 ramid, Warping, and Cost Volume (Project p	1 pagel - Submitted by Deaing Sun (NVIDIA)
2	ProFlow_ROB	1	5	1 Submitted	3 I by Daniel Maurer (University of Stuttgart)
3	LFNet_ROB	6	1	5	4 Submitted by Anonymous
4	AugFNG_ROB	8	3	3	2 Submitted by Anonymous
4	FF++_ROB	3 FlowF	4 Tields++: Accurate Optical Flow Correspond	4 Jences Meet Robust Interpolation [Project p	5 age] - Submitted by René Schuster (DFKI)
6	DMF_ROB	4	7 DeepFlow: Large displacement	6 optical flow with deep matching [Project pa	7 age] - Submitted by Alexander Brock (HCI)
6	ResPWCR_ROB	5	6	7	6 Submitted by Anonymous
8	WOLF_ROB	7	8	8	8 Submitted by Anonymous

Visual results on KITTI video sequence

Caffe & PyTorch code

35 fps for Sintel (1024x448) resolution on NVIDIA Pascal TitanX

Improvement: Iterative Residual Refinement (IRR)

[Hur and Roth CVPR 2019]

RAFT: Recurrent All-pairs Field Transforms

[Teed and Deng ECCV 2020 Best paper]

All-pairs visual similarity (costing lume)

Inner product/correlation between features

63

Cost volume pyramid

Spatial pooling

Look up cost volume

Retrieve using current motion estimat

retrieved feature vector:

81D

81D 81D 81D 81D cues on how good the current flow is and where are better similarities

Recurrent update

Like classical optimization algorithms

Recurrent update

1 Iteration

2 Iterations

5 Iterations

32 Iterations

Significant improvement over prior art

[Teed and Deng ECCV 2020 Best paper]

Sintel Results

Slide credit: Teed and Deng

Visual results on Davis (real-world)

Recent development: Attention/transformer

<u>Perceiver IO: A</u> <u>General</u> <u>Architecture for</u> <u>Structured Inputs &</u> <u>Outputs</u>. ICLR '22

70

Flowformer: A transformer architecture for optical flow

Flowformer [Huang et al. ECCV '22]

Flowformer++ [Shi et al. arXiv '23]

GM-Flow: Unifying flow, stereo and depth estimation

[Xu et al. arXiv '23]

Is architecture all we need?

Learning Data
"FlyingChairs" manually designed in 2015

[Dosovitskiy et al. ICCV'15]

"FlyingChairs" more effective than later datasets

"FlyingThings3D" [Mayer et al. 2016]

HD1K [Kondermann et al. 2016]

Multi-human [Ranjan et al. 2020]

. . .

Refresh [Lv et al. 2018]

77

Many important and interesting questions unanswered

- How realistic should the rendering be?
- Why does FlyingChairs work so well?
- Should we carefully match the motion statistics of Sintel?
- Are thin structures/fine motion details of FlyingChairs critical?

What is the objective for rendering training data?

Optimize the performance of a network on a target dataset

Jointly render data and train model

Sun et al. AutoFlow: Learning a Better Training Set for Optical Flow, CVPR'21 Oral.

How simple can the rendering be?

Start from the simplest rendering pipeline: 2D layered model

Background

+ 1 foreground objects

+ 2 foreground objects

Modeling foreground shapes

Random polygons

Modeling motion

Visual effects

Motion blur

Results of pre-training (on training set)

Avg. end-point error (AEPE) \downarrow

Model	Dataset	Sintel.clean	Sintel.final	KITTI
	FlyingChairs	3.27	4.42	11.43
PWC-Net	$Chairs \rightarrow Things$	2.39	3.90	9.81
	AutoFlow	2.17	2.91	5.76
	FlyingChairs	2.27	3.76	7.63
RAFT	$Chairs \rightarrow Things$	1.68	2.80	5.92
	AutoFlow	1.95	2.57	4.23

AutoFlow vs. FlyingChairs

Number of training examples

Are architectures and data all we need?

Optimize the performance of a network on a target dataset

Jointly render data and train model

Sun *et al.* AutoFlow: Learning a Better Training Set for Optical Flow, CVPR'21 Oral.

The devils are in the training details

Rapid progress on optical flow architectures

Differences in architecture

PWC-Net (2018)

Inspired by classical optical flow:

- Image pyramid
- Cost volume warping
- Multiscale loss function

RAFT (2020)

Introduced new network elements:

- Produces flow at a single level
- Multi-scale all-pairs cost volume
- Recurrent update operator
- Upsample module

Differences in training techniques

Lots of differences in training schemes

Training Details	PWC-Net (2018)	RAFT (2020)		
Optimizer	Adam	AdamW		
Learning rate schedule	Multi-Step LR	One Cycle LR		
Gradient clipping	No	Yes		
Training time	Moderate	Low		
Augmentation	Color + Spatial	Different Color + Spatial		

Imbalanced focus on architecture/modeling

Optical flow work on Modeling	Optical flow work on Training
Learning to estimate hidden motions with global motion aggregation. ICCV21	
<i>High-resolution optical flow from 1d attention and correlation.</i> ICCV21	
Separable flow: Learning motion cost volumes for optical flow estimation. ICCV21	???
Learning optical flow with adaptive graph reasoning. arxiv22	
Csflow: Learning optical flow via cross strip correlation for autonomous driving. arxiv22	
Pyramid recurrent all-pairs field transforms for optical flow estimation in robust vision challenge. arxiv22	

Disentangling architecture and training for optical flow

[Sun, Herrmann, et al. ECCV '22]

Our goals

• Understand the effect of modern training on performance and improve it.

Our approach

- We apply a modern training scheme to 3 prominent models
 - PWC-Net (2018)
 - IRR-PWC (2019)
 - RAFT (2020)
- We perform a thorough ablation study on pre-training and fine-tuning

Better training significantly improves performance

"Old" vs. "new" PWC-Net

Better training significantly improves performance

Compared with state of the art (April 2023)

	Method	Setting	Code	Fl-bg	Fl-fg	<u>Fl-all</u>	Density	Runtime	Environment	Compare
1	CamLiRAFT	ЪЪ	<u>code</u>	2.08 %	7.37 %	2.96 %	100.00 %	1 s	GPU @ 2.5 Ghz (Python + C/C++)	
. Liu,	T. Lu, Y. Xu, J. Liu and L. Wang:	Learning Optical	l Flow and	Scene Flov	v with Bidire	ectional Car	nera-LiDAR Fus	<u>ion</u> . arXiv preprin	t arXiv:2303.12017 2023.	
2	CamLiFlow	ЪЪ	<u>code</u>	2.31 %	7.04 %	3.10 %	100.00 %	1.2 s	GPU @ 2.5 Ghz (Python + C/C++)	
4. Liu, T. Lu, Y. Xu, J. Liu, W. Li and L. Chen: CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint Optical Flow and Scene Flow Estimation. CVPR 2022.										
3	CamLiRAFT-NR	ЪЪ	<u>code</u>	2.76 %	6.78 %	3.43 %	100.00 %	1 s	GPU @ 2.5 Ghz (Python + C/C++)	
. Liu,	T. Lu, Y. Xu, J. Liu and L. Wang:	: Learning Optical	l Flow and	Scene Flov	v with Bidire	ectional Car	nera-LiDAR Fus	<u>ion</u> . arXiv preprin	t arXiv:2303.12017 2023.	
4	M-FUSE	ŏŏ 🔗	<u>code</u>	2.66 %	7.47 ×	3.46 %	100.00 %	ე ¹ პრი	GPU	
Mehl	, A. Jahedi, J. Schmalfuss and A	. Bruhn: <u>M-FUSE:</u>	Multi-fra	se Fusion f	r Scent F	w Estimatio	Pric. Wit	onference c	pic tions of Computer Vision (WACV) 2023.	
5	RigidMask+ISF	бă	<u>code</u>	2.63 %	7.85 %	3.50 %	100.00 %	3.3 s	GPU @ 2.5 Ghz (Python)	
Yang	and D. Ramanan: Learning to S	egment Rigid Mo	tions from	Two Frame	<u>s</u> . CVPR 202	1.				
6	ScaleRAFT3D	۲ <u>۵</u>		2.37 %	9.26 %	3.51 %	100.00 %	1 s	1 core @ 2.5 Ghz (C/C++)	
7	TPCV+RAFT3D	<u>B</u> B		2.48 %	10.19 %	3.76 %	100.00 %	0.2 s 1 core @ 2.5 Ghz (C/C++)		
8	RAFT3D+mscv	ďð		2.48 %	10.23 %	3.77 %	100.00 %	0.2 s	1 core @ 2.5 Ghz (C/C++)	
9	RAFT-it+_RVC		<u>code</u>	3.62 %	5.33 %	3.90 %	100.00 %	0.14 s	1 core @ 2.5 Ghz (Python)	
Sun,	C. Herrmann, F. Reda, M. Rubin	nstein, D. Fleet ar	nd W. Free	eman: <u>Disen</u>	tangling Arc	hitecture a	nd Training for	Optical Flow. ECC	V 2022.	
10	RAFT-OCTC			3.72 %	5.39 %	4.00 %	100.00 %	0.2 s	GPU @ 2.5 Ghz (Python)	
Jeon	g, J. Lin, F. Porikli and N. Kwak:	: Imposing Consist	tency for (Optical Flov	v Estimation	Qualcomn	n Al Research).	CVPR 2022.		
11	RCA-Flow			3.67 %	6.25 %	4.10 %	100.00 %	0.16 s	1 core @ 2.5 Ghz (Python)	
12	SF2SE3	ďď	<u>code</u>	3.17 %	8.79 %	4.11 %	100.00 %	2.7 s	GPU @ >3.5 Ghz (Python)	
. Somr	ner, P. Schröppel and T. Brox: SI	F2SE3: Clustering	Scene Flo	w into SE (3	<u>3)-Motions v</u>	<u>ia Proposal</u>	and Selection.	DAGM German Co	nference on Pattern Recognition 2022.	
13	RAFT-CF-CE-PL3			3.80 %	5.65 %	4.11 %	100.00 %	0.05 s	GPU @ 2.5 Ghz (Python)	

What matters?

We iteratively build our training and show that each step improves Sintel.F

- Dataset matters
 FlyingChairs ⇒ AutoFlow
- Gradient clipping matters
 NoGC ⇒ YesGC
- Training schedule matters
 Piecewise ⇒ OneCycle
- Training iterations matter standard ⇒ 4-10 times more

for IRR	5.09 🔿 4.11	[-19%]
for RAFT	4.03 ⇒ 3.36	[-17%]
for IRR	4.11 ⇒ 3.29	[-20%]
for RAFT	3.36 🔿 3.20	[-5%]
for IRR	3.29 ⇒ 2.93	[-11%]
for RAFT	3.20 🔿 2.75	[-14%]
for IRR	2.93 ⇒ 2.76	[-6%]
for RAFT	2.75 🔿 2.41	[-12%]

Tradeoff between accuracy and speed/memory

	Inference	Time (m	$(sec)\downarrow$	Peak Memory (GB) \downarrow			
	$1024{\times}448$	Full HD	4K	1024×448	Full HD	$4\mathrm{K}$	
PWC-Net	20.61	28.77	63.31	1.478	2.886	7.610	
IRR-PWC	24.71	33.67	57.59	1.435	2.902	8.578	
RAFT	107.38	499.63	n/a	2.551	9.673	OOM	

Table 6. Inference time and memory usage for 1024×448 , Full HD (1920×1080) and 4K (3840×2160) frame sizes, averaged over 100 runs on an NVIDIA V100 GPU.

Running on Full HD and 4K images

Inputs

IRR-PWC

PWC-Net and IRR-PWC can run on 4K images, which cause RAFT to OOM

RAFT on full HD input + x2 upsampling

Content

- Deep learning-based approach
 - Designing architecture (using domain knowledge)

Content

- Deep learning-based approach
 - Designing architecture (using domain knowledge)
 - Learning data (matters)

FlyingChairs: Manually designed

AutoFlow: Joint data generation and network training

Content

- Deep learning-based approach
 - Designing architecture (using domain knowledge)
 - Learning data (matters)
 - Evaluating architectures fairly (trade-off in accuracy and speed/memory)

Results on real-world videos

What is motion for?

Video super-resolution

[Liu & Sun CVPR 2011, TPAMI 2014]

Video super-resolution

Video frame interpolation

Super SloMo [Jiang, Sun, *et al.* CVPR 2018] Incorporated into **NVIDIA NGX** SDK for the Turing GPU.

Idea: frame synthesis using optical flow

FILM: Frame Interpolation for Large Motion

[Reda, et al. ECCV 2022]

Stable diffusion + FILM (from twitter)

LASR: Learning Articulated Shape Reconstruction from a [Yang, et al. CVPR 2021]

Challenge: Solving non-rigid 3D shape from 2D measurements without template or category prior is highly *under-constrained*

Approach: Analysis-by-synthesis

Supervision from silhouette, flow and pixels

Reconstructions on more real videos

Input

<u></u>

Re

Reconstructions

Input

Input

100

Reconstructions

Face Unblur for Pixel 6

[Lai et al. SIGGRAPH 2022]

Key Idea: Wide + Ultrawide Dual Camera Fusion

Face Unblur

Alignment and Fusion Algorithm

Real-time optical flow on Pixel 6

Input image pairs

Flow by unoptimized model (>9000ms, 2GB memory)

Flow by optimized model (~13ms, 34MB memory)

Input: Kids Standing Up

Our Deblurred Result

Input: Dynamic Motion

Our Deblurred Result

Input: Walking

Our Deblurred Result

What we haven't covered

Multiple motions

Fine details

Even harder

How to obtain ground truth for real-world videos?

How do humans perceive motion?

What do you perceive?

A single Mario

Content

- Classical approach
 - Constancy assumption -> matching by comparison (cost volume)
 - Coarse-to-fine, warping-based iterative estimation
- Deep learning-based approach
 - Designing architecture (using domain knowledge)
 - Learning data (matters)
 - Evaluating architectures fairly (trade-off in accuracy and speed/memory)
- Applications: What is motion for?
 - Super-resolution, frame interpolation, articulated 3D reconstruction ...
 - Face Unblur (real-time dense accurate flow on mobile device)

A "biased" reading list

- Dr. Rick Szeliski's book (2nd edition) chapter 9 on motion estimation
- Chapters 40-43 of book by Antonio, Phillip and Bill
- Horn & Schunck, Lucas & Kanade, Secrets of optical flow
- FlowNet, PWC-Net, IRR-PWC, RAFT, Perceiver IO, GM-Flow, FlowFormer(++), AutoFlow, Disentangling architecture and training
- Bayesian VSR, Super SloMo, FILM, LASR, Face Unblur

Thank you!

Deqing Sun deqingsun@google.com

