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We live in a dynamic world

Perceiving, understanding and 
predicting motion is an 
important part of our daily lives



Motion and perceptual organization

Sometimes motion is the only cue

Slide Credit: S. Lazebnik, but idea of random dot sterogram is due to B. Julesz
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Motion and perceptual organization

Even impoverished data can create a strong percept

Slide Credit: S. Lazebnik



Motion and perceptual organization

Slide Credit: S. Lazebnik

Even impoverished data can create a strong percept
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We pay attention to motion

Alkazar’s principles of misdirection

The key to misdirection lies in learning to control attention.

Principle 1
The audience will pay attention to what moves. ...

What doesn’t move ... doesn’t attract attention. 

…
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Content

• Classical approach

• Deep learning-based approach

• Applications: What is motion for? 



Classical approach



Optical flow: 2D motion of every pixel

Color key 
[Baker et al. IJCV’11]

Input [Liu et al. CVPR’08] Optical flow (2D motion vector)
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Fundamental assumption: Brightness constancy
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[Horn & Schunck AI’81]

𝐼! 𝐩 ≈ 𝐼!"# 𝐩 + 𝐰𝐩

Second image (t+1)First image (t)
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Matching-based motion estimation 

Similarity between a pixel in image 1 with pixels in image 2

Image 2Image 1

min
𝐰𝐩

𝐼! 𝐩 − 𝐼!"# 𝐩 + 𝐰𝐩
&
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Comparing pixel colors



Slide Credit: S. 
Lazebnik

Aperture problem



Slide Credit: S. Lazebnik

Aperture problem



Slide Credit: S. Lazebnik

Aperture problem



Slide credit: D Fouhey & J Johnson

Other invisible flow



Slide credit: D Fouhey & J Johnson

Other invisible flow
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What do you perceive? 

Actual motion
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Matching-based motion estimation 

Similarity between a pixel in image 1 with pixels in image 2

min
𝐰𝐩

𝐼! 𝐩 − 𝐼!"# 𝐩 + 𝐰𝐩
&

Image 2Image 1
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Solving ambiguities: Lucas-Kanade

Similarity between a patch in image 1 with patches in image 2
○ Pixels in a patch share the same (parametric) motion

Image 2Image 1

min
𝐰𝐩

*
𝐪∈𝑵𝒑

𝐼! 𝐪 − 𝐼!"# 𝐪 + 𝐰𝐩
&



Similarity between patches (cost volume)

[Scharstein & Szeliski 2002, Hosni et al. 2013, Zbontar & LeCun 2016]

Image 1 Cost volume (darker, more similar)
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Effect of patch size



Issue: Brute force is too expensive

Image 1 Image 2



image 1image 1

Coarse-to-fine iterative estimation

image 2

Start from top or bottom?

w=1.25px 

w=5px

w=2.5px 

Slide credit: S. Lazebnik



Coarse-to-fine iterative estimation

How to use estimates from the upper level?
Slide credit: S. Lazebnik

image 1image 1 image 2

w=1.25px 

w=5px

w=2.5px 
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Coarse-to-fine iterative estimation

𝐼!"# 𝐪 + 𝐰𝐩 = 𝐼!"# 𝐪 + 𝐰𝐩
𝒌 + 𝜹𝐰𝒑 = 𝐈𝐰(𝐪 + 𝜹𝐰𝒑)

Current estimate

Small increment

𝐼( 𝐪 = 𝐼!"# 𝐪 + 𝐰𝐩
𝒌

Warped image



30

Warping operation

𝐼( 𝐪 = 𝐼!"# 𝐪 + 𝐰𝐩
𝒌

Input images t and t+1 Image t and warped image



Optical Flow Results

Slide credit: S. Lazebnik
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Issue: Motion boundaries

Pixels in a patch share the same (parametric) motion

min
𝐰𝐩

*
𝐪∈𝑵𝒑

𝐼! 𝐪 − 𝐼!"# 𝐪 + 𝐰𝐩
&
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Solving ambiguities: Horn & Schunck

Smoothness: neighboring pixels have similar motion

𝐰𝐩 ≈ 𝐰𝐪, 𝐪 ∈ 𝑁𝐩



(               ) +       
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Optimization/energy minimization
[Horn & Schunck AI’81]

Constancy (data) term Smoothness (prior) term

𝐸 𝐰 =*
𝐩

𝐼! 𝐩 − 𝐼!"# 𝐩 + 𝐰𝐩
&
+𝜆 *

𝐪∈1𝐩

𝐰𝐩 −𝐰𝐪
&
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Horn & Schunck

Ground truthHorn & Schunck Color key 
[Baker et al. IJCV’11]Input
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Improving Horn & Schunck

Ground truth“Old” Better 
optimization/ 

implementation

Robust function Non-local term

𝐸 𝐰 =*
𝐩

𝐼! 𝐩 − 𝐼!"# 𝐩 + 𝐰𝐩
&
+𝜆 *

𝐪∈1𝐩

𝐰𝐩 −𝐰𝐪
&

[Sun et al. CVPR’10, IJCV’14]
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Improving Horn & Schunck

Implementation Robust function
Non-local 

smoothness term

[Sun et al. CVPR’10, IJCV’14]
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Challenges for classical methods

Large motion
Motion blur
Occlusions
Lighting changes
Noise…

Hard to modify 
objective function 
and even harder to 
optimize it

Classic+NL EpicFlow

Ground truth Error map (red, larger)
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Content

• Classical approach
• Constancy assumption -> matching by comparison (cost volume)

Image 1 Image 2 Cost volume
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Content

• Classical approach
• Constancy assumption -> matching by comparison (cost volume)
• Coarse-to-fine, warping-based iterative estimation 

Input images t and t+1 Image t and warped image



Deep learning-based approach



44

Supervised optical flow
[Dosovitskiy et al. ICCV’15] 

What is the training/test data?



Training Data:
FlyingChairs
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Two widely-used benchmarks for optical flow

Sintel (Blender movie)

KITTI (driving)
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Supervised optical flow
[Dosovitskiy et al. ICCV’15] 

What is the network/architecture?
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FlowNetS(imple): Mapping from images to flow
[Dosovitskiy et al. ICCV’15] 

U-Net architecture
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FlowNetC(orrelation): Compare features
[Dosovitskiy et al. ICCV’15] 
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Promising but behind contemporary state of the art
[Dosovitskiy et al. ICCV’15] 



51

FlowNet2: Scaling up by stacking up FlowNetS/C
[Ilg et al. CVPR’17]
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Significant improvement 



Trade-off between accuracy and running time

FlowNet2: Ilg et al. CVPR’17
S2F-IF: Yang & Soatto CVPR’17
FlowFieldsCNN: Bailer et al. CVPR’17 
MRFlow: Wulff et al. CVPR’17 
DCFlow: Xu et al. CVPR’17
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Trade-off between accuracy and size for CNN methods

Pyramid, warping, & cost volume, 
not PricewaterhouseCoopersJ

Even bigger model?

FlowNetS/C: Dosovitskiy et al. ICCV’15 
FlowNet2: Ilg et al. CVPR’17
SpyNet: Ranjan & Black CVPR’17

PWC-Net: Sun et al. CVPR’18

54
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Inspired by classical approach



Pyramid of learnable features

Image 1

Image 2

Shared weights

(1024,512,3)

(width, height, channel number)

(512,256,16)

(256,128,32)

…

(16, 8, 192)

Large receptive field

56



Compute cost volume by correlation

Cost volume

[Dosovitskiy et al. FlowNet ICCV’15]

Features of image 2

Features of image 1

Correlation

Small search range due to 
small spatial size

(1024,512,3)

(width, height, channel number)

(16, 8, 192)

(16, 8, 81)

Cost volume

Image 1

Image 2

Shared weights
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Mapping cost volume to optical flow

Cost volume
CNN ↑

Image 1

Image 2

Shared weights
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Cost volume

Warp

Same architecture at next level

CNN

Small search range 
because of warping

↑
…



Architectures matter
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Visual results on KITTI video sequence

Caffe & 
PyTorch

code

35 fps for 
Sintel 

(1024x448) 
resolution on 
NVIDIA Pascal 

TitanX

Tensorflow
code
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Improvement: Iterative Residual Refinement (IRR)
[Hur and Roth CVPR 2019]

Figure credit: Hur and Roth
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RAFT: Recurrent All-pairs Field Transforms

Slide credit: Teed and Deng 

[Teed and Deng ECCV 2020 Best paper]



All-Pairs Visual Similarities
• Dot product between all pairs
• Repeated pooling of last two dimensions
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All-pairs visual similarity (cost volume)

Inner product/correlation between features



All-Pairs Visual Similarities
• Dot product between all pairs
• Repeated pooling of last two dimensions
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Cost volume pyramid

Spatial pooling
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Look up cost volume

Retrieve using current motion estimates
All-Pairs Visual Similarities

Current flow estimate

• Dot product between all pairs
• Repeated pooling of last two dimensions
• Use current flow estimate to retrieve a feature vector

9x9

81D 81D 81D 81D
retrieved feature vector:

cues on how good the current flow is and where are better similarities
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Recurrent update

Like classical optimization algorithms
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Recurrent update
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Significant improvement over prior art

Slide credit: Teed and Deng 

[Teed and Deng ECCV 2020 Best paper]
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Visual results on Davis (real-world)
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Recent development: Attention/transformer

Perceiver IO: A 
General 
Architecture for 
Structured Inputs & 
Outputs. ICLR ‘22

https://arxiv.org/pdf/2107.14795.pdf
https://arxiv.org/pdf/2107.14795.pdf
https://arxiv.org/pdf/2107.14795.pdf
https://arxiv.org/pdf/2107.14795.pdf
https://arxiv.org/pdf/2107.14795.pdf
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Flowformer: A transformer architecture for optical flow

Flowformer [Huang et al. ECCV ‘22] Flowformer++ [Shi et al. arXiv ‘23]

https://arxiv.org/pdf/2203.16194.pdf
https://arxiv.org/pdf/2303.01237v1.pdf
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GM-Flow: Unifying flow, stereo and depth estimation
[Xu et al. arXiv ‘23]

https://arxiv.org/pdf/2211.05783.pdf
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Is architecture all we need? 

FlyingChairs Train Evaluate



Learning Data



“FlyingChairs” manually designed in 2015
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[Dosovitskiy et al. ICCV’15] 



“FlyingChairs” more effective than later datasets
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“FlyingThings3D” [Mayer et al. 2016]

Virtual KITTI [Gaidon et al. 2016] Playing for benchmark [Richter et al. 2017]

HD1K [Kondermann et al. 2016]

Refresh [Lv et al. 2018]

Multi-human [Ranjan et al. 2020]

…
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Many important and interesting questions unanswered

• How realistic should the rendering be? 

• Why does FlyingChairs work so well?

• Should we carefully match the motion statistics of Sintel?

• Are thin structures/fine motion details of FlyingChairs critical? 

…



What is the objective for rendering training data? 
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Optimize the performance of a network on a target dataset

Jointly render data and train model

Sun et al. AutoFlow: Learning a Better Training Set for Optical Flow, CVPR’21 Oral.



How simple can the rendering be?
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Start from the simplest rendering pipeline: 2D layered model

Motion

Images

Background + 1 foreground objects + 2 foreground objects …



Modeling foreground shapes

81

Random polygons W/ holes Smoothed edges Blurred boundaries



Modeling motion

82

Affine Perspective Bilinear grid warp



Visual effects
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Motion blur

Fog



AutoFlow



FlyingChairs



Results of pre-training (on training set)
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AutoFlow vs. FlyingChairs

87



Number of training examples
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4 examples



Are architectures and data all we need? 
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Optimize the performance of a network on a target dataset

Jointly render data and train model

Sun et al. AutoFlow: Learning a Better Training Set for Optical Flow, CVPR’21 Oral.



The devils are in the training details



Rapid progress on optical flow architectures

100



Differences in architecture

101



Differences in training techniques

102



Imbalanced focus on architecture/modeling

103
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Disentangling architecture and training for optical flow

Our goals
● Understand the effect of modern training on performance and improve it.

Our approach
● We apply a modern training scheme to 3 prominent models

○ PWC-Net (2018)
○ IRR-PWC (2019)
○ RAFT (2020)

● We perform a thorough ablation study on pre-training and fine-tuning

[Sun, Herrmann, et al. ECCV ’22] 
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Better training significantly improves performance
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“Old” vs. “new” PWC-Net
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Better training significantly improves performance
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Compared with state of the art (April 2023)

Using stereo input
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What matters?
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Tradeoff between accuracy and speed/memory



PWC-Net and IRR-PWC can run on 4K images, which cause RAFT to OOM

Inputs IRR-PWC

Running on Full HD and 4K images



IRR-PWC on 4K input



113RAFT on full HD input + x2 upsampling



114

Content

• Deep learning-based approach
• Designing architecture (using domain knowledge)



Content

• Deep learning-based approach
• Designing architecture (using domain knowledge)
• Learning data (matters) 

FlyingChairs: Manually designed AutoFlow: Joint data generation and network training
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Content

• Deep learning-based approach
• Designing architecture (using domain knowledge)
• Learning data (matters) 
• Evaluating architectures fairly (trade-off in accuracy and speed/memory)



Results on real-world videos
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What is motion for? 



Video super-resolution
[Liu & Sun CVPR 2011, TPAMI 2014]
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Video super-resolution

120



Video frame interpolation 
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2-frame input 32x output

Super SloMo [Jiang, Sun, et al. CVPR 2018]
Incorporated into NVIDIA NGX SDK for the Turing GPU.



Idea: frame synthesis using optical flow

T = 0 T = 1T = t ∈(0,1)



FILM: Frame Interpolation for Large Motion
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[Reda, et al. ECCV 2022]



Stable diffusion + FILM (from twitter)
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LASR: Learning Articulated Shape Reconstruction from a 
monocular video
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Input: a monocular video Output: reconstructed 
shape
(template: sphere)

Template-based methods
(A-CSM:camel VIBE: human)Challenge:  Solving non-rigid 3D shape from 2D measurements without template or category prior 

is highly under-constrained 

A-CSM: Kulkarni 
et al. CVPR 2020 

VIBE: Kocabas et 
al. CVPR 2020 

[Yang, et al. CVPR 2021]

https://nileshkulkarni.github.io/acsm
https://www.is.mpg.de/publications/vibe-cvpr-2020


Bone transformations
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Approach: Analysis-by-synthesis

Rest shape

Camera intrinsics and 
transformations

Video inputs

Renderings

States

Differentiable 
rendering

Skinning weights

Losses
gradient
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Supervision from 
silhouette, flow and pixels

Silhouette Optical flow

Reconstructions losses

measurements

renderings

Camera 
parameters

Video inputs

Renderings

StatesLoss

Diff.
Rendering

Skinning 
weights

Bone 
transformationsRest shape
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Reconstructions on more real videos

Input Reconstructions Input Reconstructions Input Reconstructions



Face Unblur for Pixel 6
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[Lai et al. SIGGRAPH 2022]



Wide (26mm) UW (16mm)
Google Pixel 6 Pro



Wide (1/120 s) UW (1/480 s)

Key Idea: Wide + Ultrawide Dual Camera Fusion



Face Unblur
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FusionNet

PWC-Net

Warped reference

Occlusion maskOptical flow

Face mask

Source (W)

Reference (UW)

Deblurred

Face 
segmentation

Color 
matching

Bilinear 
warping

Alignment and Fusion Algorithm



Real-time optical flow on Pixel 6
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Input image pairs Flow by unoptimized model
(>9000ms, 2GB memory)

Flow by optimized model
(~13ms, 34MB memory)



Input: Kids Standing Up

Exposure time = 33 ms, iso = 1024



Our Deblurred Result

Exposure time = 33 ms, iso = 1024



Input: Dynamic Motion

Exposure time = 8.6 ms, iso = 43



Our Deblurred Result

Exposure time = 8.6 ms, iso = 43



Input: Walking

Exposure time = 8.3 ms, iso = 125



Our Deblurred Result

Exposure time = 8.3 ms, iso = 125



What we haven’t covered
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Multiple motions
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Fine details
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Even harder
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How to obtain ground truth for real-world videos? 
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How do humans perceive motion?
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What do you perceive?
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A single Mario



148

Content

• Classical approach
• Constancy assumption -> matching by comparison (cost volume)
• Coarse-to-fine, warping-based iterative estimation 

• Deep learning-based approach
• Designing architecture (using domain knowledge)
• Learning data (matters) 
• Evaluating architectures fairly (trade-off in accuracy and speed/memory)

• Applications: What is motion for? 
• Super-resolution, frame interpolation, articulated 3D reconstruction … 
• Face Unblur (real-time dense accurate flow on mobile device)
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A “biased” reading list 

● Dr. Rick Szeliski’s book (2nd edition) chapter 9 on motion estimation 
● Chapters 40-43 of book by Antonio, Phillip and Bill
● Horn & Schunck, Lucas & Kanade, Secrets of optical flow 
● FlowNet, PWC-Net, IRR-PWC, RAFT, Perceiver IO, GM-Flow, 

FlowFormer(++), AutoFlow, Disentangling architecture and training
● Bayesian VSR, Super SloMo, FILM, LASR, Face Unblur 



Deqing Sun
deqingsun@google.com

Thank you!


