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Recap: Camera parameters

World coordinates

Camera coordinates

World coordinates to camera coordinates Camera coordinates to image coordinates
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Camera parameters

World coordinates to camera coordinates Camera coordinates to image coordinates
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Now: Multi-View Geometry

We want to understand 3D world only from 2D observations (images). For that, we need to have a
mathematical understanding of how they are connected.

Mathematical model of cameras. Reconstruct camera poses, approximate geometry, and camera
parameters from 2D images of a scene.




Some Slides adapted from...

« CMU 16-385: Computer Vision
Prof. Kris Kitani

e« MIT 6.819/6.869: Advances in Computer Vision,
Profs. Bill Freeman, Phillip Isola, Antonio Torralba

o University of Tubingen: Computer Vision
Prof. Andreas Geiger



What we want to find out:
Camera poses
Camera Intrinsics
3D Geometry




Bundle Adjustment

Triangulation Epipolar Lines Fundamental & ENo Time
Essential Matrices J .. espondences

RANSAC

Incremental

How to compute 3D locations B \Wwhich pixels in two cameras Elegant formulation of Bundle

of point correspondences if observe same 3D point? Epipolar Lines Adjustment

Practically solving
cameras are known. : : for F and K
A way of estimating camera S

poses, intrinsics, and extrinsic Read:

from correspondences. Computer Vision:
Algorithms and

Applications, 2nd
ed.

Where to look for multi-view
correspondences?

What has changed since Deep Learning?




The 8-Point Algorithm as an Inductive Bias for Relative Pose Prediction by ViTs

Input-level Inductive Biases for 3D Reconstruction

2 2,3

Andrew Zisserman
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Wang Yifan'* Carl Doersch?> Relja Arandjelovié? Jodo Carreira

Science, University of Oxford

Generalizable Patch-Based Neural Rendering

Output depth
for image 1

Mohammed Suhail!, Carlos Esteves*, Leonid Sigal'?3, and Ameesh Makadia* :::::Ir ception :> "

BARF @': Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin!  Wei-Chiu Ma®?  Antonio Torralba?  Simon Lucey!?

ICarnegie Mellon University  *Massachusetts Institute of Technology >The University of Adelaide

https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF
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Known P, P,



Known P, P,



Triangulation

How to compute 3D locations
of point correspondences if
cameras are known.

What has changed since Deep Learning?



Last time: Simple Stereo System

VA

Similar Triangles:

I'+Xx, —X
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Now: General Stereo system

image 1 image 2

camera 1 with matrix P, camera 2 with matrix P,

Adapted from: CMU 16-385 (Yannis, Kris)



Triangulation

image 1 image 2

camera 1 with matrix P, camera 2 with matrix P,

Adapted from: CMU 16-385 (Yannis, Kris)



Triangulation

Which 3D points map
to X7

image 1 image 2

camera 1 with matrix P, camera 2 with matrix P,

Adapted from: CMU 16-385 (Yannis, Kris)



Triangulation

How can you compute
this ray?

image 1 image 2
0,
camera 1 with matrix P, camera 2 with matrix P,

Adapted from: CMU 16-385 (Yannis, Kris)



Triangulation

How can you compute
this ray?

image 1 image 2
0,
camera 1 with matrix P, camera 2 with matrix P,

Adapted from: CMU 16-385 (Yannis, Kris)



Triangulation

Create two points on the ray:
1) find the camera center; and

2) COmpUte RC2WK_15J(1 ~+ ()1
This procedure is called backprojection.

image 1 image 2
0,
Local ra
camera 1 with matrix P, camera 2 with matrix P,

Adapted from: CMU 16-385 (Yannis, Kris)



Triangulation

How do we find the
exact point on the ray?

image 1 image 2
0,
camera 1 with matrix P, camera 2 with matrix P,

Adapted from: CMU 16-385 (Yannis, Kris)



Triangulation

"™ Find 3D obiject point

Will the lines intersect?

image 1 image 2
O, 0,
camera 1 with matrix P, camera 2 with matrix P,

Adapted from: CMU 16-385 (Yannis, Kris)



Triangulation

"™ Find 3D obiject point

No single solution due to noise!

image 1 image 2
O, 0,
camera 1 with matrix P, camera 2 with matrix P,

Adapted from: CMU 16-385 (Yannis, Kris)



Triangulation

Given a set of (noisy) matched
pixel coordinates

{Xi}iil

Estimate the 3D point
X



Triangulation

Given a set of (noisy) matched Denote projection of X into i-th camera as

DiXel Coor]jinates ﬁl(X) _ Kl-[I ‘ ()]CZWZCX
0.

Estimate the 3D point
X



Triangulation

Given a set of (noisy) matched Denote projection of X into i-th camera as

DiXel Coor]jinates ﬁl(X) _ Kl-[I ‘ ()]CZWZCX
0.

Estimate the 3D point Then we can solve a little least squares problem:

< N
X* = argminy Z | (X)) — X;H%



Triangulation

Given a set of (noisy) matched Denote projection of X into i-th camera as

DiXel Coor]jinates ﬁl(X) _ Kl-[I ‘ ()]CZWZCX
X}

Estimate the 3D point Then we can solve a little least squares problem:

< N
X* = argminy Z | (X)) — X;‘H%

Can be solved via numerical optimization
(Gradient Descent, or smarter, Levenberg-Marquardt)
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Known P, P,!



Epipolar Lines

Which pixels in two cameras
observe same 3D point?

Where to look for multi-view
correspondences?

What has changed since Deep Learning?



Eplpolar geometry

X

Image plane

Adapted from: CMU 16-385 (Yannis, Kris)



Eplpolar geometry

014.-_--; mmmmm -—..—-_so

Image plane

Adapted from: CMU 16-385 (Yannis, Kris)



Eplpolar geometry

X

Baseline

Image plane ™ Epipole

Adapted from: CMU 16-385 (Yannis, Kris)

(projection of O on the image plane)



Eplpolar geometry

X

Epipolar plane

W it i e e e W

f € Baseline
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Image plane e Epipole

Adapted from: CMU 16-385 (Yannis, Kris)

(projection of O on the image plane)



Eplpolar geometry

Epipolar line ==, X

(intersection of Epipolar 7
plane and image plane) /'

/
f’f
V4
P :
4 Epipolar plane
L
01 g € Baseline )
Es
"
Image plane ™ Epipole

Adapted from: CMU 16-385 (Yannis, Kris)

(projection of O on the image plane)



—plpolar constraint

Potential matches for X; lie on the epipolar line 1,
Adapted from: CMU 16-385 (Yannis, Kris)



Converging cameras

AN /

&

Where is the epipole in this image?

Adapted from: CMU 16-385 (Yannis, Kris)



Converging cameras

N
N

/
/

Where is the epipole in this image?

Adapted from: CMU 16-385 (Yannis, Kris)

it's not always In the iImage



Parallel cameras

Where is the epipole?

Adapted from: CMU 16-385 (Yannis, Kris)



Parallel cameras

/
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epipole at infinity

Adapted from: CMU 16-385 (Yannis, Kris)



cplpolar Lines: The Hacky Way

X — RICQWKl_lil + Ol
P,X

P,O, )



Adapted from: CMU 16-385 (Yannis, Kris)



Generalizable Patch-Based Neural Rendering

Mohammed Suhail', Carlos Esteves*, Leonid Sigal'*3, and Ameesh Makadia*

Input-level Inductive Biases for 3D Reconstruction

2 2,3

Wang Yifan!* Carl Doersch® Relja Arandjelovié? Jodo Carreira® Andrew Zisserman

'ETH Zurich  *DeepMind  *VGG, Department of Engineering Science, University of Oxford

~ Output depth

Input matrix for image 1
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cplpolar Lines: The Hacky Way

X — Rf2WK1—15’(1 + 01
P,X

PO, e, O,

This always works ;)
But: Not clean, many steps.
Is there a better way?



Fundamental &
Essential Matrices

Elegant formulation of
Epipolar Lines

A way of estimating camera
poses, intrinsics, and extrinsic
from correspondences.

What has changed since Deep Learning?



cplpolar Lines: The Hacky Way

X — Rf2WK1—15’(1 + 01
P,X

PO, e, O,

This always works ;)
But: Not clean, many steps.
Is there a better way?



| Ines In Homogeneous Coordinates

A
ax + by + C = O in vector form l — 'b]

C

[

f the point X is on the epipolar line I then

Adapted from: CMU 16-385 (Yannis, Kris)



| Ines In Homogeneous Coordinates

C

A
ax + by + C = O in vector form l — 'b]

[

f the point X is on the epipolar line I then

']l =0

Adapted from: CMU 16-385 (Yannis, Kris)



Introducing: The Fundamental Matrix K

Adapted from: CMU 16-385 (Yannis, Kris)



K

The Fundamental Matrix 1Is a 3 x 3 matrix
that encodes epipolar geometry

Given a point in one image,
multiplying by the fundamental matrix will tell us
the epipolar line in the second image.

We'll first derive an analytical formula for ¥, and then discuss
a humerical algorithm to estimate it from point correspondences.



Definition of
Fundamental Matrix

Point X, lies on epipolar line 1, f(glz — ()




Adapted from: CMU 16-385 (Yannis, Kris)



We’ll now work off of this constraint to derive an analytical formula for F .

~Toro~
X, kX, =0

X

Adapted from: CMU 16-385 (Yannis, Kris)



Adapted from: CMU 16-385 (Yannis, Kris)



Adapted from: CMU 16-385 (Yannis, Kris)



x =K'k
The local ray direction!

Homogenized pixel coordinate
Adapted from: CMU 16-385 (Yannis, Kris)



Adapted from: CMU 16-385 (Yannis, Kris)



These three vectors are coplanar
X1, t, X,

Adapted from: CMU 16-385 (Yannis, Kris)



f X, T, X, are coplanar then

Adapted from: CMU 16-385 (Yannis, Kris)



f X, T, X, are coplanar then

dot product of orthogonal vectors cross-product: vector orthogonal to plane



f X, T, X, are coplanar then

(X, —t) (X X)) =72

Adapted from: CMU 16-385 (Yannis, Kris)



f X, T, X, are coplanar then

(X, —t)' (tXX;) =0

Adapted from: CMU 16-385 (Yannis, Kris)



putting It together

rigid motion coplanarity

%, = R(X, — t) (X, —t)' (tXX;) =0

Adapted from: CMU 16-385 (Yannis, Kris)



putting It together

rigid motion coplanarity

%, = R(X, — t) (X, —t)' (tXX;) =0

(KGRIt x X)) =0

Adapted from: CMU 16-385 (Yannis, Kris)



putting It together

rigid motion coplanarity

%, = R(X, — t) (X, —t)' (tXX;) =0

(XZR)(t X X) =
X R)([t], X)) =

0 -t ¢t
with cross product matrix [t]l, = | &3 0 —f
—t t 0

Adapted from: CMU 16-385 (Yannis, Kris)



putting It together

rigid motion coplanarity

%, = R(X, — t) (X, —t)' (tXX;) =0

(XZR)(t X X) =

X R)([t], X)) =
X, (R[t], )%, =0

Adapted from: CMU 16-385 (Yannis, Kris)



putting It together

rigid motion coplanarity
%, = RX, —t) (X, —t)' (tXX;) =0
(XZR)(t X X) =

X R)([t], X)) =
X, (R[t], )%, =0

K T(R[t],)K'%, =0

Adapted from: CMU 16-385 (Yannis, Kris)



putting It together

rigid motion coplanarity
%, = RX, —t) (X, —t)' (tXX;) =0
(XZR)(t X X) =

X R)([t], X)) =
X, (R[t], )%, =0

K T(R[t],)K'%, =0
X, Fx, =0

Adapted from: CMU 16-385 (Yannis, Kris)



putting It together

Adapted from: CMU 16-385 (Yannis, Kris)



F = KJ/(R[t] )K"

Figure credit: CMU 16-385 (Yannis, Kris)



cplpolar Lines: The Hacky Way

X — Rf2WK1—15’(1 —+ Ol
P,X
2 O
P201 ez 2

This always works ;)

Adapted from: CMU 16-385 (Yannis, Kris)



What if P, P, aren’t known?



Finding correspondences

Match features between | LI | E ’

=1\

each pair of images

e Need to find a lot of candidates.

» Typical algorithm for keypoint detection & descriptor computation: SIFT

* Qutlier rejection with RANSAC (no time to talk about that, but very
cool )

From MIT 6.819/6.869: Advances in Computer Vision, Profs. Bill Freeman, Phillip Isola, Antonio Torralba



Finding correspondences

' g

Match features between  FREER=—"" 8§ = y
each pair of image ‘ . IE

* Need to find a lot of candidates.
» Typical algorithm for keypoint detection & descriptor computation: SIFT

* Qutlier rejection with RANSAC (no time to talk about that, but very
cool )

From MIT 6.819/6.869: Advances in Computer Vision, Profs. Bill Freeman, Phillip Isola, Antonio Torralba



The Eight-Point Algorithm

~Toro~
X, Fx, =0

[X1»Y1»1] I'y; Iy I'p3
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The Eight-Point Algorithm
X, Fx, =0

Idea: Leverage epipolar constraint to estimate ¥ from correspondences!



The Eight-Point Algorithm

igFil — O F11

X5, X1Y05 X1 VX, VY2, Y5 X0, Vs 1| | Fap | =0



The Eight-Point Algorithm
X, Fx, =0

8X9

- with W € | _i.e., 8 correspondences
WE=0 stacked on top of each other



The Eight-Point Algorithm
X, Fx, =0

— 0 with W € R ie., 8 correspondences
o stacked on top of each other

Wi

By determining the null-space of W, we can determine f up to scale.



The Eight-Point Algorithm
X, Fx, =0

WFE = 0 with W &€ R8X9, .e., 8 correspondences
o stacked on top of each other

By determining the null-space of W, we can determine f up to scale.

F = K,/ (R[t] )K"

If K; are known, we can then back out R and t.

If not, need additional constraints.
None of this is straightforward.
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The 8-Point Algorithm as an Inductive Bias for Relative Pose Prediction by ViTs

Chris Rockwell, Justin Johnson, David F. Fouhey
University of Michigan

Abstract

We present a simple baseline for directly estimating the
relative pose (rotation and translation, including scale) be-
tween two images. Deep methods have recently shown
strong progress but often require complex or multi-stage ar-
chitectures. We show that a handful of modifications can be
applied to a Vision Transformer (ViT) to bring its compu-
tations close to the Eight-Point Algorithm. This inductive
bias enables a simple method to be competitive in multiple
settings, often substantially improving over the state of the
art with strong performance gains in limited data regimes.

@I‘“ Y [Vewi 2 E]

Essential Features. | ;_:

Position

Matrix |=—p

3
............ e L
Module Vis. & |
[T
@ ViT L y, Position | UL %
Relative

Flattened Patches Pose

Input Images

Figure 1. We propose three small modifications to a ViT via the
Essential Matrix Module, enabling computations similar to the
Eight-Point algorithm. The resulting mix of visual and positional
features 1s a good inductive bias for pose estimation.

challenge in the wide-baseline setting, and the conversion




What has changed since Deep Learning?

No Time

Correspondences
RANSAC
Incremental
Bundle
Adjustment

Practically solving
for F and K

Read:
Computer Vision:
Algorithms and
Applications, 2nd
ed.




Bundle Adjustment

What has changed since Deep Learning?



What if we have many views”



Bundle Adjustment

-1 5 =y
[ e in e o Lot e

il ARARAAY

» Goal: Optimize reprojection errors (distance between observed feature and
projected 3D point in image plane) wrt. camera parameters and 3D point cloud

Snavely, Seitz and Szeliski: Photo tourism: exploring photo collections in 3D. SIGGRAPH, 2006. 48
Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger



Bundle Adjustment

Let IT = {m;} denote the N cameras including their intrinsic and extrinsic parameters.
Let X, = {x}'} with x}Y € R” denote the set of P 3D points in world coordinates.
Let X, = {x} } with x? € R? denote the image (screen) observations in all i cameras.

49
Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger



Bundle Adjustment

Let IT = {m;} denote the N cameras including their intrinsic and extrinsic parameters.
Let X, = {x}'} with x}Y € R” denote the set of P 3D points in world coordinates.
Let X, = {x} } with x? € R? denote the image (screen) observations in all i cameras.

Bundle adjustment minimizes the reprojection error of all observations:

N P
IT", X = argmin » » wp|[x5, — m(x)|5
thw 521 p=1

Here, wy, indicates if point p is observed in image i and m;(x)’) is the 3D-to-2D
projection of 3D world point x;’ onto the 2D image plane of the i'th camera, i.e..

Up/ Wy,

Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger



Bundle Adjustment

K; and |R;|t;]| are the intrinsic and extrinsic parameters of =;, respectively.
During bundle adjustment, we optimize {(K;, R;, t;) } and {x;} jointly.

Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger

50



Challenges of Bundle Adjustment

Initialization:
» The energy landscape of the bundle adjustment problem is highly non-convex
» A good initialization is crucial to avoid getting trapped in bad local minima

» As initializing all 3D points and cameras jointly is difficult (occlusion, viewpoint,
matching outliers), incremental bundle adjustment initializes with a carefully
selected two-view reconstruction and iteratively adds new images/cameras

Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger



Challenges of Bundle Adjustment

Initialization:
» The energy landscape of the bundle adjustment problem is highly non-convex
» A good initialization is crucial to avoid getting trapped in bad local minima

» As initializing all 3D points and cameras jointly is difficult (occlusion, viewpoint,
matching outliers), incremental bundle adjustment initializes with a carefully
selected two-view reconstruction and iteratively adds new images/cameras

Optimization:
» Given millions of features and thousands of cameras, large-scale bundle
adjustment is computationally demanding (cubic complexity in #unknowns)

» Luckily, the problem is sparse (not all 3D points are observed in every camera),

and efficient sparse implementations (e.g., Ceres) can be exploited in practice

57
Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger



Results and Applications



COLMAP StM

e, o

s

: x4
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» COLMAP significantly improves accuracy and robustness compared to prior work

Schonberger and Frahm: Structure-from-Motion Revisited. CVPR, 2016.
Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger

63



COLMAP MVS

» COLMAP features a second multi-view stereo stage to obtain dense geometry

Schonberger, Zheng, Frahm and Marc Pollefeys: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV, 2016.
Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger
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Photo Tourism
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» Photo Tourism / PhotoSynth allows for exploring photo collections in 3D

Snavely, Seitz and Szeliski: Photo tourism: exploring photo collections in 3D. SIGGRAPH, 2006.
Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger



Parallel Tracking and Mapping (PTAM)

Moving stuff outside the window. doesnitibotherthelsystem

» PTAM demonstrates real-time tracking and mapping of small workspaces

Klein and Murray: Parallel Tracking and Mapping for Small AR Workspaces. ISMAR, 2007.
Adapted from: University of Tubingen: Computer Vision, Prof. Andreas Geiger

66


https://www.youtube.com/watch?v=Y9HMn6bd-v8

What has changed since Deep Learning?



Supervised Monocular Depth Estimation:

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
Eigen et al. 2014

96 L7 Coarse
r 256 384 » 384 » 256, 4096,
— > > ] > ¢ >
11x11 conv 5x5 conv 3x3 conv 3x3 conv 3x3 conv full full 1=
4 stride 2x2 pool N
2x2 pool :
Coarse 1 Coarse 2 Coarse 3 Coarse 4 Coarse 5 Coarse 6 Coarse 7 |
| ;
63 » : 64 ; 64 -
> .- ->> > :
9x9 conv Concatenate 5x5 conv 5x5 conv :
2 stride ‘
2x2 pool Fine 1 Fine 2 Fine 3
...................... R
Input :
r " Coarse Fine
: | Layer input 1 2,34 5 6 7 1,2,3,4
Size (NYUDepth) | 304x228 | 37x27 18x13 8x6  1x1  74x355 74x55
Size (KITTI) 576x172 | 71x20 35x9 17x4 1x1 142x27 | 142x27
Ratio to input /1 /8 /16 /32 - /4 /4

Figure 1: Model architecture.



Supervised Monocular Depth Estimation:

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
Eigen et al. 2014

Input Coarse




Supervised Stereo Depth Estimation:
Input-Level Inductive Biases for 3D Reconstruction
Yifan et al. 2021

~ Output depth

Input matrix for image 1
flatten()

S N Generalist Perception
>
Model

. 2%l Queries /
| ?/ for image 1
\ & y

Input image pair
N

inductive biases
AL

Multiple view
geometry

Input image pairs Model predictions Ground truth depth maps



Supervised Stereo Depth Estimation:

Input-Level Inductive Biases for 3D Reconstruction
Yifan et al. 2021

relative angle, 6,

. 3D point
8 A .
S

g

5

g L >

Multiple view
geometry

inductive biases
AL

Input image pairs Model predictions Ground truth depth maps



Unsupervised Depth and Ego-Motion from Video
(Zhou et al. 2017)

Frame at time ¢, Frame at time ¢,

Goal: Learn Depth and Ego-Motion (relative camera pose) just from video!



Unsupervised Depth and Ego-Motion from Video
(Zhou et al. 2017)

Target view Depth CNN




Unsupervised Depth and Ego-Motion from Video
(Zhou et al. 2017)

Depth CNN




Self-supervised Learning of Depth and Pose from Video
Guizilini et al. 2021 eredictea Pointeloud

/|

Photometric loss

Current frame Adjacent frame




Self-supervised Learning of Depth and Pose from Video
Guizilini et al. 2021




SuperGlue: Learning Feature Matching with Graph Neural Networks
Sarin et al. 2019
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SuperGlue: Learning Feature Matching with Graph Neural Networks
Sarin et al. 2019
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PixelNeRF (Yu et al. 2020)

\ f Volume Rendering
Input View W . ‘

\f\\@ (z,d) — — (RGBo) %

»
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BARF: Bundle-Adjusting Neural Radiance Fields
(Lin et al. 2021)

[ : input3D 3 C color (RGB)

\ . coordinates . O volume density

o
ul ! neural network
\ \ (MLP)

M
min > || Z(u;pi, ©) - Zi(w)
Pi1,--+s P M ,6 A e m RGB , AGR

What if the camera poses are imperfect (or even unknown)?
Can we optimize the poses naively through backpropagation?



What has changed since Deep Learning?

By and large, we still rely on conventional Bundle Adjustment to solve
multi-view geometry for us.

While relatively reliable, this has major downsides:
Not online, not robust to scene motion, not amenable to end-to-end learning...

IMO we’re missing the correct way to “learn” multi-view geometry in a self-
supervised way. It should be possible: Build a model that watches video and learns
to reconstruct both pose and a proper 3D scene representation!

Maybe one of you will get there :)



Given multi-view observations of static scene, we can solve for camera
poses, camera intrinsics, and pretty good 3D geometry.



The 8-Point Algorithm as an Inductive Bias for Relative Pose Prediction by ViTs

Input-level Inductive Biases for 3D Reconstruction

2 2,3

Andrew Zisserman

22

Wang Yifan'* Carl Doersch?> Relja Arandjelovié? Jodo Carreira

Science, University of Oxford

Generalizable Patch-Based Neural Rendering

Output depth
for image 1

Mohammed Suhail!, Carlos Esteves*, Leonid Sigal'?3, and Ameesh Makadia* :::::Ir ception :> "

BARF @': Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin!  Wei-Chiu Ma®?  Antonio Torralba?  Simon Lucey!?

ICarnegie Mellon University  *Massachusetts Institute of Technology >The University of Adelaide

https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF
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