Lecture 16

Multi-View Geometry

Recap: Hom. Coordinates

$$
\begin{array}{c|c}
& 2 \mathrm{D} \\
\mathbb{R}^{2} & \mathbb{P}^{2} \\
\mathbf{x}=(x, y) \Rightarrow\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\tilde{\mathbf{x}} & \left.\begin{array}{c}
\mathbb{R}^{3} \\
\mathbf{X}=(X, Y, Z) \Rightarrow\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\tilde{\mathbf{X}} \\
{\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)}
\end{array} \begin{array}{l}
X \\
Y \\
Y \\
Z \\
W
\end{array}\right] \Rightarrow(X / W, Y / W, Z / W)
\end{array}
$$

Recap: Camera parameters

World coordinates to camera coordinates

$$
\tilde{\mathbf{X}}_{c}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R t} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{X}}_{w}
$$

Camera coordinates to image coordinates

$$
\tilde{\mathbf{x}}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \tilde{\mathbf{X}}_{c}
$$

Camera parameters

World coordinates to camera coordinates

$$
\begin{gathered}
\tilde{\mathbf{X}}_{c}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R t} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{X}}_{w} \\
\tilde{\mathbf{X}}_{c}=\mathbf{C}^{W 2 C} \tilde{\mathbf{X}}_{w}
\end{gathered}
$$

$$
\begin{gathered}
\tilde{\mathbf{x}}=\mathbf{K}[\mathbf{I} \mid 0] \mathbf{C}^{W 2 C} \tilde{\mathbf{X}}_{w} \\
\tilde{\mathbf{x}}=\mathbf{P} \tilde{\mathbf{X}}_{w}
\end{gathered}
$$

Now: Multi-View Geometry

Why?
We want to understand 3D world only from 2D observations (images). For that, we need to have a mathematical understanding of how they are connected.

Some Slides adapted from...

- CMU 16-385: Computer Vision Prof. Kris Kitani
- MIT 6.819/6.869: Advances in Computer Vision, Profs. Bill Freeman, Phillip Isola, Antonio Torralba
- University of Tübingen: Computer Vision Prof. Andreas Geiger

Bundle Adjustment

Triangulation

How to compute 3D locations of point correspondences if cameras are known.

Epipolar Lines

Which pixels in two cameras observe same 3D point?

Where to look for multi-view correspondences?

Fundamental \& Essential Matrices

Elegant formulation of Epipolar Lines

A way of estimating camera poses, intrinsics, and extrinsic from correspondences.

No Time

Correspondences RANSAC
Incremental Bundle Adjustment Practically solving for F and K

Read: Computer Vision: Algorithms and Applications, 2nd ed.

What has changed since Deep Learning?

The 8-Point Algorithm as an Inductive Bias for Relative Pose Prediction by ViTs

Input-level Inductive Biases for 3D Reconstruction

Wang Yifan ${ }^{1 *}$ Carl Doersch ${ }^{2}$ Relja Arandjelović ${ }^{2}$ João Carreira ${ }^{2}$ Andrew Zisserman ${ }^{2,3}$
Science, University of Oxford

Generalizable Patch-Based Neural Rendering

Mohammed Suhail ${ }^{1}$, Carlos Esteves ${ }^{4}$, Leonid Sigal ${ }^{1,2,3}$, and Ameesh Makadia ${ }^{4}$

BARF : Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin ${ }^{1}$ Wei-Chiu Ma ${ }^{2}$ Antonio Torralba ${ }^{2}$ Simon Lucey ${ }^{1,3}$
${ }^{1}$ Carnegie Mellon University $\quad{ }^{2}$ Massachusetts Institute of Technology ${ }^{3}$ The University of Adelaide
https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF

Antonio's old office!

了
Known $\mathbf{P}_{1}, \mathbf{P}_{2}$!
了

了
Known $\mathbf{P}_{1}, \mathbf{P}_{2}$!
了

Bundle Adjustment

Triangulation

How to compute 3D locations of point correspondences if cameras are known.

Epipolar Lines

Which pixels in two cameras observe same 3D point?

Where to look for multi-view correspondences?

Fundamental \& Essential Matrices

Elegant formulation of Epipolar Lines

A way of estimating camera poses, intrinsics, and extrinsic from correspondences.

What has changed since Deep Learning?

Last time: Simple Stereo System

Now: General Stereo system

Triangulation

Triangulation

Triangulation

Triangulation

Triangulation

Create two points on the ray:

1) find the camera center; and
2) Compute $\mathbf{R}^{C 2 W} \mathbf{K}^{-1} \tilde{\mathbf{x}}_{1}+\mathbf{O}_{1}$

This procedure is called backprojection.

camera 1 with matrix \mathbf{P}_{1}

Triangulation

Triangulation

Triangulation

Triangulation

Given a set of (noisy) matched pixel coordinates

$$
\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}
$$

Estimate the 3D point
X

Triangulation

Given a set of (noisy) matched pixel coordinates

$$
\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}
$$

Estimate the 3D point

$$
\mathbf{x}
$$

Denote projection of \mathbf{X} into i-th camera as

$$
\tilde{\pi}_{i}(\mathbf{X})=\mathbf{K}_{i}[\mathbf{I} \mid 0] \mathbf{C}_{i}^{W 2 C} \tilde{\mathbf{X}}
$$

Triangulation

Given a set of (noisy) matched pixel coordinates

$$
\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}
$$

Estimate the 3D point
\mathbf{X}

Denote projection of \mathbf{X} into i-th camera as

$$
\tilde{\pi}_{i}(\mathbf{X})=\mathbf{K}_{i}[\mathbf{I} \mid 0] \mathbf{C}_{i}^{W 2 C} \tilde{\mathbf{X}}
$$

Then we can solve a little least squares problem:

$$
\mathbf{X}^{*}=\operatorname{argmin}_{\mathbf{X}} \sum_{i}^{N}\left\|\pi_{i}(\mathbf{X})-\mathbf{x}_{i}\right\|_{2}^{2}
$$

Triangulation

Given a set of (noisy) matched pixel coordinates

$$
\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}
$$

Estimate the 3D point
X

Denote projection of \mathbf{X} into i-th camera as

$$
\tilde{\pi}_{i}(\mathbf{X})=\mathbf{K}_{i}[\mathbf{I} \mid 0] \mathbf{C}_{i}^{W 2 C} \tilde{\mathbf{X}}
$$

Then we can solve a little least squares problem:

$$
\mathbf{X}^{*}=\operatorname{argmin}_{\mathbf{X}} \sum_{i}^{N}\left\|\pi_{i}(\mathbf{X})-\mathbf{x}_{i}\right\|_{2}^{2}
$$

Can be solved via numerical optimization (Gradient Descent, or smarter, Levenberg-Marquardt)

了
Known $\mathbf{P}_{1}, \mathbf{P}_{2}$!
了

Bundle Adjustment

Triangulation

How to compute 3D locations of point correspondences if cameras are known.

Epipolar Lines

Which pixels in two cameras observe same 3D point?

Where to look for multi-view correspondences?

Fundamental \& Essential Matrices

Elegant formulation of Epipolar Lines

A way of estimating camera poses, intrinsics, and extrinsic from correspondences.

What has changed since Deep Learning?

Epipolar geometry

Epipolar constraint

Potential matches for \mathbf{x}_{1} lie on the epipolar line \mathbf{l}_{2}

Where is the epipole in this image?
It's not always in the image

Parallel cameras

Where is the epipole?

Parallel cameras

epipole at infinity

Epipolar Lines: The Hacky Way

Generalizable Patch-Based Neural Rendering

Mohammed Suhail ${ }^{1}$, Carlos Esteves ${ }^{4}$, Leonid Sigal ${ }^{1,2,3}$, and Ameesh Makadia ${ }^{4}$

Input-level Inductive Biases for 3D Reconstruction

Epipolar Lines: The Hacky Way

This always works ;)
But: Not clean, many steps. Is there a better way?

Bundle Adjustment

Triangulation

How to compute 3D locations of point correspondences if cameras are known.

Epipolar Lines

Which pixels in two cameras observe same 3D point?

Where to took for multi-view correspondences?

Fundamental \&
Essential Matrices

Elegant formulation of
Epipolar Lines
A way of estimating camera poses, intrinsics, and extrinsic from correspondences.

What has changed since Deep Learning?

Epipolar Lines: The Hacky Way

This always works ;)
But: Not clean, many steps. Is there a better way?

Lines in Homogeneous Coordinates

$a x+b y+c=0 \quad$ in vector form $\quad \mathbf{l}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$

If the point \mathbf{x} is on the epipolar line \mathbf{l} then

$$
\tilde{\mathbf{x}}^{T} \mathbf{l}=?
$$

Lines in Homogeneous Coordinates

$a x+b y+c=0 \quad$ invecacortom $\quad \mathbf{l}=\left[\begin{array}{l}b \\ c\end{array}\right]$

If the point \mathbf{x} is on the epipolar line \mathbf{l} then

$$
\tilde{\mathbf{x}}^{T} \mathbf{l}=0
$$

Introducing: The Fundamental Matrix \mathbf{F}
$\mathbf{F} \tilde{\mathbf{x}}_{1}=\mathbf{l}_{2}$

$\mathbf{F} \tilde{\mathbf{x}}_{1}=\mathbf{l}_{2}$

The Fundamental Matrix is a 3×3 matrix that encodes epipolar geometry

Given a point in one image, multiplying by the fundamental matrix will tell us the epipolar line in the second image.

We'll first derive an analytical formula for \mathbf{F}, and then discuss a numerical algorithm to estimate it from point correspondences.

Definition of Fundamental Matrix

$\mathbf{F} \tilde{\mathbf{x}}_{1}=\mathbf{l}_{2}$

Point $\tilde{\mathbf{X}}_{2}$ lies on epipolar line $\mathbf{l}_{2} \quad \tilde{\mathbf{x}}_{2}^{T} \mathbf{l}_{2}=0$

$$
\begin{gathered}
\tilde{\mathbf{x}}_{2}^{T} \mathbf{l}_{2}=0 \\
\tilde{\mathbf{x}}_{2}^{T} \tilde{\mathbf{x}}_{1}=?
\end{gathered}
$$

We'll now work off of this constraint to derive an analytical formula for \mathbf{F}.

$$
\tilde{\mathbf{x}}_{2}^{T} \mathbf{F} \tilde{\mathbf{x}}_{1}=0
$$

putting it together

$$
\begin{gathered}
\text { rigid motion } \\
\overline{\mathbf{x}}_{2}=\mathbf{R}\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right)
\end{gathered}
$$

coplanarity
$\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right)^{T}\left(\mathbf{t} \times \overline{\mathbf{x}}_{1}\right)=0$

putting it together

$$
\begin{array}{r}
\text { rigid motion } \\
\overline{\mathbf{x}}_{2}=\mathbf{R}\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right) \\
\left(\overline{\mathbf{x}}_{2}^{T} \mathbf{R}\right)\left(\mathbf{t} \times \overline{\mathbf{x}}_{1}\right)=0
\end{array}
$$

putting it together

rigid motion
coplanarity

$$
\overline{\mathbf{x}}_{2}=\mathbf{R}\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right) \quad\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right)^{T}\left(\mathbf{t} \times \overline{\mathbf{x}}_{1}\right)=0
$$

$$
\left(\overline{\mathbf{x}}_{2}^{T} \mathbf{R}\right)\left(\mathbf{t} \times \overline{\mathbf{x}}_{1}\right)=0
$$

$$
\left(\overline{\mathbf{x}}_{2}^{T} \mathbf{R}\right)\left([\mathbf{t}]_{\times} \overline{\mathbf{x}}_{1}\right)=0
$$

with cross product matrix $\quad[\mathbf{t}]_{\times}=\left[\begin{array}{ccc}0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0\end{array}\right]$

putting it together

$$
\begin{array}{r}
\text { rigid motion } \\
\overline{\mathbf{x}}_{2}=\mathbf{R}\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right) \quad\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right) \\
\left(\overline{\mathbf{x}}_{2}^{T} \mathbf{R}\right)\left(\mathbf{t} \times \overline{\mathbf{x}}_{1}\right)=0 \\
\left(\overline{\mathbf{x}}_{2}^{T} \mathbf{R}\right)\left([\mathbf{t}]_{\times} \overline{\mathbf{x}}_{1}\right)=0 \\
\overline{\mathbf{x}}_{2}^{T}\left(\mathbf{R}[\mathbf{t}]_{\times}\right) \overline{\mathbf{x}}_{1}=0
\end{array}
$$

putting it together

$$
\begin{array}{r}
\text { rigid motion } \quad\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right)^{T}(\mathbf{t}> \\
\overline{\mathbf{x}}_{2}=\mathbf{R}\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right) \quad \text { coplana } \\
\left(\overline{\mathbf{x}}_{2}^{T} \mathbf{R}\right)\left(\mathbf{t} \times \overline{\mathbf{x}}_{1}\right)=0 \\
\left(\overline{\mathbf{x}}_{2}^{T} \mathbf{R}\right)\left([\mathbf{t}]_{\times} \overline{\mathbf{x}}_{1}\right)=0 \\
\overline{\mathbf{x}}_{2}^{T}\left(\mathbf{R}[\mathbf{t}]_{\times}\right) \overline{\mathbf{x}}_{1}=0 \\
\tilde{\mathbf{x}}_{2}^{T} \mathbf{K}_{2}^{-T}\left(\mathbf{R}[\mathbf{t}]_{\times}\right) \mathbf{K}_{1}^{-1} \tilde{\mathbf{x}}_{1}=0
\end{array}
$$

putting it together

$$
\begin{gathered}
\text { rigid motion } \\
\overline{\mathbf{x}}_{2}=\mathbf{R}\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right) \quad\left(\overline{\mathbf{x}}_{1}-\mathbf{t}\right)^{T}(\mathbf{t}> \\
\left(\overline{\mathbf{x}}_{2}^{T} \mathbf{R}\right)\left(\mathbf{t} \times \overline{\mathbf{x}}_{1}\right)=0 \\
\left(\overline{\mathbf{x}}_{2}^{T} \mathbf{R}\right)\left([\mathbf{t}]_{\times} \overline{\mathbf{x}}_{1}\right)=0 \\
\overline{\mathbf{x}}_{2}^{T}\left(\mathbf{R}[\mathbf{t}]_{\times}\right) \overline{\mathbf{x}}_{1}=0 \\
\tilde{\mathbf{x}}_{2}^{T} \mathbf{K}_{2}^{-T}\left(\mathbf{R}[\mathbf{t}]_{\times}\right) \mathbf{K}_{1}^{-1} \tilde{\mathbf{x}}_{1}=0 \\
\tilde{\mathbf{x}}_{2}^{T} \mathbf{F} \tilde{\mathbf{x}}_{1}=0
\end{gathered}
$$

putting it together

$$
\begin{gathered}
\hline \mathbf{F}=\mathbf{K}_{2}^{-T}\left(\mathbf{R}[\mathbf{t}]_{\times}\right) \mathbf{K}_{1}^{-1} \\
\mathbf{F} \tilde{\mathbf{x}}_{1}=\mathbf{l}_{2}
\end{gathered}
$$

$\mathbf{F}=\mathbf{K}_{2}^{-T}\left(\mathbf{R}[\mathbf{t}]_{\times}\right) \mathbf{K}_{1}^{-1}$ $\mathbf{F} \tilde{\mathbf{x}}_{1}=\mathbf{l}_{2}$

Epipolar Lines: The Hacky Way

This always works ;)

了
What if $\mathbf{P}_{1}, \mathbf{P}_{2}$ aren't known?

Finding correspondences

Match features between each pair of images

- Need to find a lot of candidates.
- Typical algorithm for keypoint detection \& descriptor computation: SIFT
- Outlier rejection with RANSAC (no time to talk about that, but very cool :)

Finding correspondences

Match features between each pair of images

- Need to find a lot of candidates.
- Typical algorithm for keypoint detection \& descriptor computation: SIFT
- Outlier rejection with RANSAC (no time to talk about that, but very cool:)

The Eight-Point Algorithm

 $\tilde{\mathbf{x}}_{2}^{T} \mathbf{F} \tilde{\mathbf{x}}_{1}=0$$$
\left[x_{1}, y_{1}, 1\right]\left[\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right]=0
$$

The Eight-Point Algorithm $\tilde{\mathbf{x}}_{2}^{T} \mathbf{F} \tilde{\mathbf{x}}_{1}=0$

Idea: Leverage epipolar constraint to estimate \mathbf{F} from correspondences!

The Eight-Point Algorithm

The Eight-Point Algorithm $\tilde{\mathbf{x}}_{2}^{T} \mathbf{F} \tilde{\mathbf{x}}_{1}=0$

$\mathbf{W f}=0 \quad$ with $\mathbf{W} \in \mathbb{R}^{8 \times 9}$, i.e., 8 correspondences
stacked on top of each other

The Eight-Point Algorithm $\tilde{\mathbf{x}}_{2}^{T} \mathbf{F} \tilde{\mathbf{x}}_{1}=0$

$\mathbf{W} \mathbf{f}=0 \quad$ with $\mathbf{W} \in \mathbb{R}^{8 \times 9}$, i.e., 8 correspondences

stacked on top of each other

By determining the null-space of \mathbf{W}, we can determine \mathbf{f} up to scale.

The Eight-Point Algorithm $\tilde{\mathbf{x}}_{2}^{T} \mathbf{F} \tilde{\mathbf{x}}_{1}=0$

$\mathbf{W f}=0 \quad$ with $\mathbf{W} \in \mathbb{R}^{8 \times 9}$, i.e., 8 correspondences stacked on top of each other

By determining the null-space of \mathbf{W}, we can determine \mathbf{f} up to scale.

$$
\mathbf{F}=\mathbf{K}_{2}^{-T}\left(\mathbf{R}[\mathbf{t}]_{\times}\right) \mathbf{K}_{1}^{-1}
$$

If \mathbf{K}_{i} are known, we can then back out \mathbf{R} and \mathbf{t}. If not, need additional constraints.
None of this is straightforward.

The 8-Point Algorithm as an Inductive Bias for Relative Pose Prediction by ViTs

Chris Rockwell, Justin Johnson, David F. Fouhey
University of Michigan

Abstract

We present a simple baseline for directly estimating the relative pose (rotation and translation, including scale) between two images. Deep methods have recently shown strong progress but often require complex or multi-stage architectures. We show that a handful of modifications can be applied to a Vision Transformer (ViT) to bring its computations close to the Eight-Point Algorithm. This inductive bias enables a simple method to be competitive in multiple settings, often substantially improving over the state of the art with strong performance gains in limited data regimes.

Figure 1. We propose three small modifications to a ViT via the Essential Matrix Module, enabling computations similar to the Eight-Point algorithm. The resulting mix of visual and positional features is a good inductive bias for pose estimation.
challenge in the wide-baseline setting, and the conversion

Bundle Adjustment

Triangulation

How to compute 3D locations of point correspondences if cameras are known.

Epipolar Lines

Which pixels in two cameras observe same 3D point?

Where to took for multi-view correspondences?

Fundamental \& Essential Matrices

Elegant formulation of Epipolar Lines

A way of estimating camera poses, intrinsics, and extrinsic from correspondences.

No Time
Correspondences RANSAC Incremental

Bundle Adjustment
Practically solving for F and K

Read:
Computer Vision Algorithms and Applications, 2nd
ed.

What has changed since Deep Learning?

Bundle Adjustment

Triangulation

How to compute 3D locations of point correspondences if cameras are known.

Epipolar Lines

Which pixels in two cameras observe same 3D point?

Where to look for multi-view correspondences?

Fundamental \&

 Essentia MatricesElegant formulation of Epipolar Lines

A way of estimating camera poses, intrinsics, and extrinsic from correspondences.

What has changed since Deep Learning?

What if we have many views?

Bundle Adjustment

- Goal: Optimize reprojection errors (distance between observed feature and projected 3D point in image plane) wrt. camera parameters and 3D point cloud

Bundle Adjustment

Let $\Pi=\left\{\pi_{i}\right\}$ denote the N cameras including their intrinsic and extrinsic parameters.
Let $\mathcal{X}_{w}=\left\{\mathbf{x}_{p}^{w}\right\}$ with $\mathbf{x}_{p}^{w} \in \mathbb{R}^{3}$ denote the set of P 3D points in world coordinates.
Let $\mathcal{X}_{s}=\left\{\mathbf{x}_{i p}^{s}\right\}$ with $\mathbf{x}_{i p}^{s} \in \mathbb{R}^{2}$ denote the image (screen) observations in all i cameras.

Bundle Adjustment

Let $\Pi=\left\{\pi_{i}\right\}$ denote the N cameras including their intrinsic and extrinsic parameters.
Let $\mathcal{X}_{w}=\left\{\mathbf{x}_{p}^{w}\right\}$ with $\mathbf{x}_{p}^{w} \in \mathbb{R}^{3}$ denote the set of P 3D points in world coordinates.
Let $\mathcal{X}_{s}=\left\{\mathbf{x}_{i p}^{s}\right\}$ with $\mathbf{x}_{i p}^{s} \in \mathbb{R}^{2}$ denote the image (screen) observations in all i cameras.
Bundle adjustment minimizes the reprojection error of all observations:

$$
\Pi^{*}, \mathcal{X}_{w}^{*}=\underset{\Pi, \mathcal{X}_{w}}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{p=1}^{P} w_{i p}\left\|\mathbf{x}_{i p}^{S}-\pi_{i}\left(\mathbf{x}_{p}^{w}\right)\right\|_{2}^{2}
$$

Here, $w_{i p}$ indicates if point p is observed in image i and $\pi_{i}\left(\mathbf{x}_{p}^{w}\right)$ is the 3D-to-2D projection of 3D world point \mathbf{x}_{p}^{w} onto the 2D image plane of the i'th camera, i.e.:

$$
\pi_{i}\left(\mathbf{x}_{p}^{w}\right)=\binom{\tilde{x}_{p}^{s} / \tilde{w}_{p}^{s}}{\tilde{y}_{p}^{s} / \tilde{w}_{p}^{s}} \quad \text { with } \quad \tilde{\mathbf{x}}_{p}^{s}=\mathbf{K}_{i}\left(\mathbf{R}_{i} \mathbf{x}_{p}^{w}+\mathbf{t}_{i}\right)
$$

Bundle Adjustment

\mathbf{K}_{i} and $\left[\mathbf{R}_{i} \mid \mathbf{t}_{i}\right]$ are the intrinsic and extrinsic parameters of π_{i}, respectively. During bundle adjustment, we optimize $\left\{\left(\mathbf{K}_{i}, \mathbf{R}_{i}, \mathbf{t}_{i}\right)\right\}$ and $\left\{\mathbf{x}_{p}^{w}\right\}$ jointly.

Challenges of Bundle Adjustment

Initialization:

- The energy landscape of the bundle adjustment problem is highly non-convex
- A good initialization is crucial to avoid getting trapped in bad local minima
- As initializing all 3D points and cameras jointly is difficult (occlusion, viewpoint, matching outliers), incremental bundle adjustment initializes with a carefully selected two-view reconstruction and iteratively adds new images/cameras

Challenges of Bundle Adjustment

Initialization:

- The energy landscape of the bundle adjustment problem is highly non-convex
- A good initialization is crucial to avoid getting trapped in bad local minima
- As initializing all 3D points and cameras jointly is difficult (occlusion, viewpoint, matching outliers), incremental bundle adjustment initializes with a carefully selected two-view reconstruction and iteratively adds new images/cameras

Optimization:

- Given millions of features and thousands of cameras, large-scale bundle adjustment is computationally demanding (cubic complexity in \#unknowns)
- Luckily, the problem is sparse (not all 3D points are observed in every camera), and efficient sparse implementations (e.g., Ceres) can be exploited in practice

Results and Applications

COLMAP SfM

- COLMAP significantly improves accuracy and robustness compared to prior work

cOLMAP MVS

- COLMAP features a second multi-view stereo stage to obtain dense geometry

Photo Tourism

- Photo Tourism / PhotoSynth allows for exploring photo collections in 3D

Parallel Tracking and Mapping (PTAM)

- PTAM demonstrates real-time tracking and mapping of small workspaces

Which pixels in two cameras

observe same 3D point?

What has changed since Deep Learning?

Supervised Monocular Depth Estimation:

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network Eigen et al. 2014

Figure 1: Model architecture.

Supervised Monocular Depth Estimation:
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network Eigen et al. 2014

Supervised Stereo Depth Estimation:
Input-Level Inductive Biases for 3D Reconstruction
Yifan et al. 2021

Input image pairs

Model predictions

Ground truth depth maps

Supervised Stereo Depth Estimation:
Input-Level Inductive Biases for 3D Reconstruction Yifan et al. 2021

Input image pairs

Model predictions

Ground truth depth maps

Unsupervised Depth and Ego-Motion from Video (Zhou et al. 2017)

Frame at time t_{1}

Frame at time t_{2}

Goal: Learn Depth and Ego-Motion (relative camera pose) just from video!

Unsupervised Depth and Ego-Motion from Video (Zhou et al. 2017)

Unsupervised Depth and Ego-Motion from Video (Zhou et al. 2017)

Self-supervised Learning of Depth and Pose from Video Guizilini et al. 2021 predicesef poinctoud

Self-supervised Learning of Depth and Pose from Video Guizilini et al. 2021

SuperGlue: Learning Feature Matching with Graph Neural Networks Sarin et al. 2019

SuperGlue: Learning Feature Matching with Graph Neural Networks Sarin et al. 2019

Attentional Graph Neural Network

Optimal Matching Layer

PixelNeRF (Yu et al. 2020)

BARF: Bundle-Adjusting Neural Radiance Fields (Lin et al. 2021)

What if the camera poses are imperfect (or even unknown)?
Can we optimize the poses naïvely through backpropagation?

What has changed since Deep Learning?

By and large, we still rely on conventional Bundle Adjustment to solve multi-view geometry for us.

While relatively reliable, this has major downsides:
Not online, not robust to scene motion, not amenable to end-to-end learning...
IMO we're missing the correct way to "learn" multi-view geometry in a selfsupervised way. It should be possible: Build a model that watches video and learns to reconstruct both pose and a proper 3D scene representation!

Maybe one of you will get there :)

Summary

Given multi-view observations of static scene, we can solve for camera poses, camera intrinsics, and pretty good 3D geometry.

The 8-Point Algorithm as an Inductive Bias for Relative Pose Prediction by ViTs

Input-level Inductive Biases for 3D Reconstruction

Wang Yifan ${ }^{1 *}$ Carl Doersch ${ }^{2}$ Relja Arandjelović ${ }^{2}$ João Carreira ${ }^{2}$ Andrew Zisserman ${ }^{2,3}$
Science, University of Oxford

Generalizable Patch-Based Neural Rendering

Mohammed Suhail ${ }^{1}$, Carlos Esteves ${ }^{4}$, Leonid Sigal ${ }^{1,2,3}$, and Ameesh Makadia ${ }^{4}$

BARF : Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin ${ }^{1}$ Wei-Chiu Ma ${ }^{2}$ Antonio Torralba ${ }^{2}$ Simon Lucey ${ }^{1,3}$
${ }^{1}$ Carnegie Mellon University $\quad{ }^{2}$ Massachusetts Institute of Technology ${ }^{3}$ The University of Adelaide
https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF

