
6.8300/6.8301 Advances in Computer Vision Spring 2023

Vincent Sitzmann, Bill Freeman, Mina Luković

Lecture 16

Multi-View Geometry

2D

2

x = (x, y) [
x
y
1] = x̃

[
x
y
w] (x/w, y/w)

ℝ2 ℙ2

3D

X = (X, Y, Z) [
X
Y
Z] = X̃

X
Y
Z
W

(X/W, Y/W, Z/W)

ℝ3 ℙ3

Recap: Hom. Coordinates

Recap: Camera parameters

World coordinates to camera coordinates Camera coordinates to image coordinates

3

X̃c = [R −Rt
0 1] X̃w x̃ =

f 0 px 0
0 f py 0
0 0 1 0

X̃c

Camera coordinates

Y

X

Z

YC

XC

ZC

World coordinates

t

Xw

Xc
R

Camera parameters
World coordinates to camera coordinates Camera coordinates to image coordinates

4

X̃c = [R −Rt
0 1] X̃w x̃ =

f 0 px 0
0 f py 0
0 0 1 0

X̃c

X̃c = CW2CX̃w x̃ = K[I |0]X̃c

x̃ = K[I |0]CW2CX̃w

x̃ = PX̃w

Now: Multi-View Geometry

Mathematical model of cameras. Reconstruct camera poses, approximate geometry, and camera
parameters from 2D images of a scene.

We want to understand 3D world only from 2D observations (images). For that, we need to have a
mathematical understanding of how they are connected.
Why?

What you’ll
learn.

Bundle Adjustment

I Goal: Optimize reprojection errors (distance between observed feature and
projected �D point in image plane) wrt. camera parameters and �D point cloud

Snavely, Seitz and Szeliski: Photo tourism: exploring photo collections in �D. SIGGRAPH, ���6. �8

Some Slides adapted from…
• CMU 16-385: Computer Vision 

Prof. Kris Kitani

• MIT 6.819/6.869: Advances in Computer Vision,  
Profs. Bill Freeman, Phillip Isola, Antonio Torralba

• University of Tübingen: Computer Vision 
Prof. Andreas Geiger

6

What we want to find out:

 Camera poses

 Camera Intrinsics

 3D Geometry

No Time
Fundamental &  
Essential Matrices

Elegant formulation of  
Epipolar Lines 

A way of estimating camera
poses, intrinsics, and extrinsic

from correspondences.

Correspondences

RANSAC 

Incremental
Bundle

Adjustment

Practically solving

for and  F K

Epipolar Lines

Which pixels in two cameras
observe same 3D point?

Where to look for multi-view

correspondences?

Triangulation

How to compute 3D locations
of point correspondences if

cameras are known.

Bundle Adjustment

What has changed since Deep Learning?

Read: 
Computer Vision:
Algorithms and

Applications, 2nd
ed.

Antonio’s old office!

Known P1, P2!

x1 x2

Known P1, P2!

...
No Time
Fundamental &  

Essential Matrices

Elegant formulation of  

Epipolar Lines 

A way of estimating camera
poses, intrinsics, and extrinsic

from correspondences.

Epipolar Lines

Which pixels in two cameras
observe same 3D point?

Where to look for multi-view

correspondences?

Bundle Adjustment

What has changed since Deep Learning?

Triangulation

How to compute 3D locations
of point correspondences if

cameras are known.

Last time: Simple Stereo System

X1

f

xl

Z?

X2

xr

f

T

Similar Triangles:

T + xr − xl

Z − f
=

T
Z

Disparity

Solve for Z:

Z = f
T

xl − xr

Now: General Stereo system

image 2image 1

Given

camera 1 with matrix P1

x1 x2

camera 2 with matrix P2
Adapted from: CMU 16-385 (Yannis, Kris)

Triangulation

image 2image 1

Given

camera 1 with matrix P1

x1 x2

camera 2 with matrix P2
Adapted from: CMU 16-385 (Yannis, Kris)

Triangulation

image 2image 1

camera 1 with matrix P1

x1 x2

camera 2 with matrix P2

Which 3D points map
to ?x1

Adapted from: CMU 16-385 (Yannis, Kris)

Triangulation

image 2image 1

camera 1 with matrix P1

x1 x2

camera 2 with matrix P2

How can you compute
this ray?

O1

Adapted from: CMU 16-385 (Yannis, Kris)

Triangulation

image 2image 1

camera 1 with matrix P1

x1 x2

camera 2 with matrix P2

How can you compute
this ray?

O1

Adapted from: CMU 16-385 (Yannis, Kris)

x̄1 = K−1x̃1
Local ray direction

Triangulation

image 2image 1

camera 1 with matrix P1

x1 x2

camera 2 with matrix P2

O1

Create two points on the ray:

1) find the camera center; and

2) Compute

This procedure is called backprojection.

RC2WK−1x̃1 + O1

Adapted from: CMU 16-385 (Yannis, Kris)

RC2Wx̄1 + O1

x̄1 = K−1x̃1
Local ray direction

Triangulation

image 2image 1

camera 1 with matrix P1

x1 x2

camera 2 with matrix P2

O1

How do we find the
exact point on the ray?

Adapted from: CMU 16-385 (Yannis, Kris)

Triangulation

image 2image 1

Find 3D object point

Will the lines intersect?

camera 1 with matrix P1

x1 x2

camera 2 with matrix P2

O1 O2

Adapted from: CMU 16-385 (Yannis, Kris)

Triangulation

image 2image 1

Find 3D object point

No single solution due to noise!

camera 1 with matrix P1

x1 x2

camera 2 with matrix P2

O1 O2

Adapted from: CMU 16-385 (Yannis, Kris)

Triangulation

Given a set of (noisy) matched  
pixel coordinates

Estimate the 3D point

{xi}N
i=1

X

Triangulation

Given a set of (noisy) matched  
pixel coordinates

Estimate the 3D point

Denote projection of into i-th camera asX

{xi}N
i=1

X

π̃i(X) = Ki[I |0]CW2C
i X̃

Triangulation

Given a set of (noisy) matched  
pixel coordinates

Estimate the 3D point

Denote projection of into i-th camera asX

{xi}N
i=1

X

π̃i(X) = Ki[I |0]CW2C
i X̃

Then we can solve a little least squares problem:

X* = argminX

N

∑
i

∥πi(X) − xi∥2
2

Triangulation

Given a set of (noisy) matched  
pixel coordinates

Estimate the 3D point

Denote projection of into i-th camera asX

{xi}N
i=1

X

π̃i(X) = Ki[I |0]CW2C
i X̃

Then we can solve a little least squares problem:

X* = argminX

N

∑
i

∥πi(X) − xi∥2
2

Can be solved via numerical optimization  
(Gradient Descent, or smarter, Levenberg-Marquardt)

x1

Known P1, P2!

Where is ?x2

...
No Time
Fundamental &  

Essential Matrices

Elegant formulation of  

Epipolar Lines 

A way of estimating camera
poses, intrinsics, and extrinsic

from correspondences.

Bundle Adjustment

What has changed since Deep Learning?

Triangulation

How to compute 3D locations
of point correspondences if

cameras are known.

Epipolar Lines

Which pixels in two cameras
observe same 3D point?

Where to look for multi-view

correspondences?

Epipolar geometry

Image plane

O1 O2

X

Adapted from: CMU 16-385 (Yannis, Kris)

Epipolar geometry

Image plane

BaselineO1 O2

X

Adapted from: CMU 16-385 (Yannis, Kris)

Epipolar geometry

Image plane

Baseline

Epipole

(projection of O on the image plane)

O1 O2

X

e1 e2

Adapted from: CMU 16-385 (Yannis, Kris)

Epipolar geometry

Epipole

(projection of O on the image plane)

Baseline

Epipolar plane

Image plane

Baselinee1 e2O1 O2

X

Adapted from: CMU 16-385 (Yannis, Kris)

Epipolar geometry

Epipole

(projection of O on the image plane)

Baseline

Epipolar plane

Epipolar line

(intersection of Epipolar
plane and image plane)

Image plane

O1 O2

X

e1 e2

Adapted from: CMU 16-385 (Yannis, Kris)

l1
l2

Epipolar constraint

Potential matches for lie on the epipolar line x1 l2

x1

e1 e2O1 O2

x2

Adapted from: CMU 16-385 (Yannis, Kris)

l2

Converging cameras

Where is the epipole in this image?

Adapted from: CMU 16-385 (Yannis, Kris)

Converging cameras

It’s not always in the image Where is the epipole in this image?

here!

Adapted from: CMU 16-385 (Yannis, Kris)

Parallel cameras

Where is the epipole?
Adapted from: CMU 16-385 (Yannis, Kris)

Parallel cameras

epipole at infinity
Adapted from: CMU 16-385 (Yannis, Kris)

Epipolar Lines: The Hacky Way

x2

x1

e2O1 O2P2Õ1

P2X̃

X = RC2W
1 K−1

1 x̃1 + O1

Epipolar Geometry

I Epipolar lines for two real images based on estimated epipolar geometry
I Note that corresponding points lie on the corresponding epipolar lines

�8
Adapted from: CMU 16-385 (Yannis, Kris)

Epipolar Lines: The Hacky Way

x2

x1

e2O1 O2P2Õ1

P2X̃

X = RC2W
1 K−1

1 x̃1 + O1

This always works ;)
But: Not clean, many steps.

Is there a better way?

...
No Time

Bundle Adjustment

What has changed since Deep Learning?

Triangulation

How to compute 3D locations
of point correspondences if

cameras are known.

Epipolar Lines

Which pixels in two cameras
observe same 3D point?

Where to look for multi-view

correspondences?

Fundamental &  
Essential Matrices

Elegant formulation of  
Epipolar Lines 

A way of estimating camera
poses, intrinsics, and extrinsic

from correspondences.

Epipolar Lines: The Hacky Way

x2

x1

e2O1 O2P2Õ1

P2X̃

X = RC2W
1 K−1

1 x̃1 + O1

This always works ;)
But: Not clean, many steps.

Is there a better way?

Lines in Homogeneous Coordinates

ax + by + c = 0 in vector form l = [
a
b
c]

If the point is on the epipolar line thenx l

x̃Tl = ?
Adapted from: CMU 16-385 (Yannis, Kris)

in vector form

If the point is on the epipolar line thenx l

ax + by + c = 0 l = [
a
b
c]

x̃Tl = 0
Adapted from: CMU 16-385 (Yannis, Kris)

Lines in Homogeneous Coordinates

Introducing: The Fundamental Matrix F

Fx̃1 = l2

X

x2x1

O2O1
e1 e2

l1 l2

Adapted from: CMU 16-385 (Yannis, Kris)

The Fundamental Matrix is a 3 x 3 matrix
that encodes epipolar geometry

Given a point in one image,

multiplying by the fundamental matrix will tell us

the epipolar line in the second image.

We’ll first derive an analytical formula for , and then discuss 
a numerical algorithm to estimate it from point correspondences.

F

Fx̃1 = l2

Fx̃1 = l2

x̃T
2 l2 = 0

Definition of  
Fundamental Matrix

Point lies on epipolar line x̃2 l2

X

x2x1

O2O1
e1 e2

l1 l2

x̃T
2Fx̃1 = ?

Adapted from: CMU 16-385 (Yannis, Kris)

Fx̃1 = l2x̃T
2 l2 = 0

X

x2x1

O2O1
e1 e2

l1 l2

Adapted from: CMU 16-385 (Yannis, Kris)

We’ll now work off of this constraint to derive an analytical formula for .F

x̃T
2Fx̃1 = 0

X

O2O1
e1 e2

l1 l2

Adapted from: CMU 16-385 (Yannis, Kris)

x̄2x̄1
x2x1

X

O2O1
e1 e2

l1 l2

Adapted from: CMU 16-385 (Yannis, Kris)

x̄2x̄1
x2x1

X

O2O1
e1 e2

l1 l2

Adapted from: CMU 16-385 (Yannis, Kris)

The local ray direction!
x̄ = K−1x̃

x̄2x̄1
x2x1

x̃ = [
x
y
1]

Homogenized pixel coordinate

X

O2O1
e1 e2

l1 l2

x̄2 = R(x̄1 − t)
Adapted from: CMU 16-385 (Yannis, Kris)

x̄2x̄1
x2x1

X

O2O1
e1 e2

l1 l2

These three vectors are coplanar
x̄1, t, x̄2

Adapted from: CMU 16-385 (Yannis, Kris)

x̄2x̄1
x2x1

X

O2O1 e2

l1 l2 x̄2x̄1

If are coplanar thenx̄1, t, x̄2

x̄T
1(t × x̄1) = 0

Adapted from: CMU 16-385 (Yannis, Kris)

x2x1

cross-product: vector orthogonal to planedot product of orthogonal vectors

X

x2x1

O2O1 e2

l1 l2

If are coplanar thenx̄1, t, x̄2

x̄T
1(t × x̄1) = 0

x̄2x̄1

(x̄1 − t)T(t × x̄1) = ?

X

x2x1

O2O1 e2

l1 l2

Adapted from: CMU 16-385 (Yannis, Kris)

If are coplanar thenx̄1, t, x̄2

x̄2x̄1

X

x2x1

O2O1 e2

l1 l2

Adapted from: CMU 16-385 (Yannis, Kris)

(x̄1 − t)T(t × x̄1) = 0
If are coplanar thenx̄1, t, x̄2

x̄2x̄1

putting it together
coplanarityrigid motion

(x̄1 − t)T(t × x̄1) = 0x̄2 = R(x̄1 − t)

Adapted from: CMU 16-385 (Yannis, Kris)

putting it together
coplanarityrigid motion

(x̄1 − t)T(t × x̄1) = 0x̄2 = R(x̄1 − t)

(x̄T
2R)(t × x̄1) = 0

Adapted from: CMU 16-385 (Yannis, Kris)

putting it together
coplanarityrigid motion

(x̄1 − t)T(t × x̄1) = 0x̄2 = R(x̄1 − t)

(x̄T
2R)(t × x̄1) = 0

(x̄T
2R)([t]×x̄1) = 0

Adapted from: CMU 16-385 (Yannis, Kris)

[t]× =
0 −t3 t2
t3 0 −t1

−t2 t1 0
with cross product matrix

putting it together
coplanarityrigid motion

(x̄1 − t)T(t × x̄1) = 0x̄2 = R(x̄1 − t)

(x̄T
2R)(t × x̄1) = 0

(x̄T
2R)([t]×x̄1) = 0
x̄T

2(R[t]×)x̄1 = 0

Adapted from: CMU 16-385 (Yannis, Kris)

putting it together
coplanarityrigid motion

(x̄1 − t)T(t × x̄1) = 0x̄2 = R(x̄1 − t)

(x̄T
2R)(t × x̄1) = 0

(x̄T
2R)([t]×x̄1) = 0
x̄T

2(R[t]×)x̄1 = 0

Adapted from: CMU 16-385 (Yannis, Kris)

x̃T
2K−T

2 (R[t]×)K−1
1 x̃1 = 0

putting it together
coplanarityrigid motion

(x̄1 − t)T(t × x̄1) = 0x̄2 = R(x̄1 − t)

(x̄T
2R)(t × x̄1) = 0

(x̄T
2R)([t]×x̄1) = 0
x̄T

2(R[t]×)x̄1 = 0

Adapted from: CMU 16-385 (Yannis, Kris)

x̃T
2K−T

2 (R[t]×)K−1
1 x̃1 = 0

x̃T
2Fx̃1 = 0

putting it together

Adapted from: CMU 16-385 (Yannis, Kris)

Fx̃1 = l2

F = K−T
2 (R[t]×)K−1

1

Fx̃1 = l2

X

x2x1

O2O1
e1 e2

l1 l2

Figure credit: CMU 16-385 (Yannis, Kris)

F = K−T
2 (R[t]×)K−1

1

Epipolar Lines: The Hacky Way

x2

x1

e2O1 O2P2Õ1

P2X̃

Adapted from: CMU 16-385 (Yannis, Kris)

X = RC2W
1 K−1

1 x̃1 + O1

This always works ;)

What if aren’t known?P1, P2

Finding correspondences
Match features between

each pair of images

From MIT 6.819/6.869: Advances in Computer Vision, Profs. Bill Freeman, Phillip Isola, Antonio Torralba

• Need to find a lot of candidates.

• Typical algorithm for keypoint detection & descriptor computation: SIFT

• Outlier rejection with RANSAC (no time to talk about that, but very
cool :)

Finding correspondences
Match features between

each pair of images

From MIT 6.819/6.869: Advances in Computer Vision, Profs. Bill Freeman, Phillip Isola, Antonio Torralba

• Need to find a lot of candidates.

• Typical algorithm for keypoint detection & descriptor computation: SIFT

• Outlier rejection with RANSAC (no time to talk about that, but very
cool :)

The Eight-Point Algorithm
x̃T

2Fx̃1 = 0

[x1, y1,1]
F11 F12 F13
F21 F22 F23
F31 F32 F33

[
x2
y2

1] = 0

The Eight-Point Algorithm
x̃T

2Fx̃1 = 0
Idea: Leverage epipolar constraint to estimate from correspondences!F

The Eight-Point Algorithm
x̃T

2Fx̃1 = 0

[x1x2, x1y2, x1, yx2, yy2, y, x2, y2,1]

F11
F12
F13
F21
F22
F23
F31
F32
F33

= 0

The Eight-Point Algorithm
x̃T

2Fx̃1 = 0

Wf = 0 with , i.e., 8 correspondences
stacked on top of each other

W ∈ ℝ8×9

The Eight-Point Algorithm
x̃T

2Fx̃1 = 0

Wf = 0 with , i.e., 8 correspondences
stacked on top of each other

W ∈ ℝ8×9

By determining the null-space of , we can determine up to scale.W f

The Eight-Point Algorithm
x̃T

2Fx̃1 = 0

Wf = 0 with , i.e., 8 correspondences
stacked on top of each other

W ∈ ℝ8×9

By determining the null-space of , we can determine up to scale.W f

F = K−T
2 (R[t]×)K−1

1
If are known, we can then back out and . 

If not, need additional constraints. 
None of this is straightforward.

Ki R t

Fundamental &  
Essential Matrices

Elegant formulation of  
Epipolar Lines 

A way of estimating camera
poses, intrinsics, and extrinsic

from correspondences.

Epipolar Lines

Which pixels in two cameras
observe same 3D point?

Where to look for multi-view

correspondences?

Triangulation

How to compute 3D locations
of point correspondences if

cameras are known.

Bundle Adjustment

What has changed since Deep Learning?

No Time

Correspondences

RANSAC 
Incremental

Bundle
Adjustment

Practically solving
for and  F K

Read: 
Computer Vision:
Algorithms and

Applications, 2nd
ed.

What has changed since Deep Learning?

Triangulation

How to compute 3D locations
of point correspondences if

cameras are known.

Epipolar Lines

Which pixels in two cameras
observe same 3D point?

Where to look for multi-view

correspondences?

Fundamental &  
Essential Matrices

Elegant formulation of  
Epipolar Lines 

A way of estimating camera
poses, intrinsics, and extrinsic

from correspondences.

...
No Time

Bundle Adjustment

What if we have many views?

Bundle Adjustment

I Goal: Optimize reprojection errors (distance between observed feature and
projected �D point in image plane) wrt. camera parameters and �D point cloud

Snavely, Seitz and Szeliski: Photo tourism: exploring photo collections in �D. SIGGRAPH, ���6. �8
Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

Bundle Adjustment
Let ⇧ = {⇡i} denote the N cameras including their intrinsic and extrinsic parameters.
Let Xw = {xw

p } with xw
p 2 R3 denote the set of P �D points in world coordinates.

Let Xs = {xs
ip} with xs

ip 2 R2 denote the image (screen) observations in all i cameras.

Bundle adjustment minimizes the reprojection error of all observations:

⇧⇤,X ⇤
w = argmin

⇧,Xw

NX

i=1

PX

p=1

wip kxs
ip � ⇡i(x

w
p)k

2
2

Here, wip indicates if point p is observed in image i and ⇡i(xw
p) is the �D-to-�D

projection of �D world point xw
p onto the �D image plane of the i’th camera, i.e.:

⇡i(x
w
p) =

x̃sp/w̃

s
p

ỹsp/w̃
s
p

!
with x̃s

p = Ki(Ri x
w
p + ti)

��
Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

Bundle Adjustment
Let ⇧ = {⇡i} denote the N cameras including their intrinsic and extrinsic parameters.
Let Xw = {xw

p } with xw
p 2 R3 denote the set of P �D points in world coordinates.

Let Xs = {xs
ip} with xs

ip 2 R2 denote the image (screen) observations in all i cameras.

Bundle adjustment minimizes the reprojection error of all observations:

⇧⇤,X ⇤
w = argmin

⇧,Xw

NX

i=1

PX

p=1

wip kxs
ip � ⇡i(x

w
p)k

2
2

Here, wip indicates if point p is observed in image i and ⇡i(xw
p) is the �D-to-�D

projection of �D world point xw
p onto the �D image plane of the i’th camera, i.e.:

⇡i(x
w
p) =

x̃sp/w̃

s
p

ỹsp/w̃
s
p

!
with x̃s

p = Ki(Ri x
w
p + ti)

��
Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

Bundle Adjustment

Im
age P

lane 1

Camera
Coordinate
System 1

Image
Coordinate
System 1

World
Coordinate

System

Image
Coordinate
System 2

Camera
Coordinate
System 2

Image Plane 2

Ki and [Ri|ti] are the intrinsic and extrinsic parameters of ⇡i, respectively.
During bundle adjustment, we optimize {(Ki,Ri, ti)} and {xw

p } jointly.
��

Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

Challenges of Bundle Adjustment
Initialization:
I The energy landscape of the bundle adjustment problem is highly non-convex
I A good initialization is crucial to avoid getting trapped in bad local minima
I As initializing all �D points and cameras jointly is dif�cult (occlusion, viewpoint,

matching outliers), incremental bundle adjustment initializes with a carefully
selected two-view reconstruction and iteratively adds new images/cameras

Optimization:
I Given millions of features and thousands of cameras, large-scale bundle

adjustment is computationally demanding (cubic complexity in #unknowns)
I Luckily, the problem is sparse (not all �D points are observed in every camera),

and ef�cient sparse implementations (e.g., Ceres) can be exploited in practice
��

Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

Challenges of Bundle Adjustment
Initialization:
I The energy landscape of the bundle adjustment problem is highly non-convex
I A good initialization is crucial to avoid getting trapped in bad local minima
I As initializing all �D points and cameras jointly is dif�cult (occlusion, viewpoint,

matching outliers), incremental bundle adjustment initializes with a carefully
selected two-view reconstruction and iteratively adds new images/cameras

Optimization:
I Given millions of features and thousands of cameras, large-scale bundle

adjustment is computationally demanding (cubic complexity in #unknowns)
I Luckily, the problem is sparse (not all �D points are observed in every camera),

and ef�cient sparse implementations (e.g., Ceres) can be exploited in practice
��

Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

Results and Applications

COLMAP SfM

I COLMAP signi�cantly improves accuracy and robustness compared to prior work

Schönberger and Frahm: Structure-from-Motion Revisited. CVPR, ���6. 6�
Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

COLMAP MVS

I COLMAP features a second multi-view stereo stage to obtain dense geometry

Schönberger, Zheng, Frahm and Marc Pollefeys: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV, ���6. 6�
Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

Photo Tourism

I Photo Tourism / PhotoSynth allows for exploring photo collections in �D

Snavely, Seitz and Szeliski: Photo tourism: exploring photo collections in �D. SIGGRAPH, ���6. 6�
Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

Parallel Tracking and Mapping (PTAM)

I PTAM demonstrates real-time tracking and mapping of small workspaces

Klein and Murray: Parallel Tracking and Mapping for Small AR Workspaces. ISMAR, ����. 66
Adapted from: University of Tübingen: Computer Vision, Prof. Andreas Geiger

Parallel Tracking and Mapping (PTAM)

I PTAM demonstrates real-time tracking and mapping of small workspaces

Klein and Murray: Parallel Tracking and Mapping for Small AR Workspaces. ISMAR, ����. 66

https://www.youtube.com/watch?v=Y9HMn6bd-v8

Triangulation

How to compute 3D locations
of point correspondences if

cameras are known.

Epipolar Lines

Which pixels in two cameras
observe same 3D point?

Where to look for multi-view

correspondences?

Fundamental &  
Essential Matrices

Elegant formulation of  
Epipolar Lines 

A way of estimating camera
poses, intrinsics, and extrinsic

from correspondences.

...
No Time

Bundle Adjustment

What has changed since Deep Learning?

Supervised Monocular Depth Estimation: 
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network 
Eigen et al. 2014

Supervised Monocular Depth Estimation: 
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network 
Eigen et al. 2014

Coarse Fine GTInput

Supervised Stereo Depth Estimation:  
Input-Level Inductive Biases for 3D Reconstruction 
Yifan et al. 2021

Supervised Stereo Depth Estimation:  
Input-Level Inductive Biases for 3D Reconstruction 
Yifan et al. 2021

Unsupervised Depth and Ego-Motion from Video
(Zhou et al. 2017)

…

Goal: Learn Depth and Ego-Motion (relative camera pose) just from video!

Unsupervised Depth and Ego-Motion from Video
(Zhou et al. 2017)

Unsupervised Depth and Ego-Motion from Video
(Zhou et al. 2017)

Self-supervised Learning of Depth and Pose from Video 
Guizilini et al. 2021

Self-supervised Learning of Depth and Pose from Video 
Guizilini et al. 2021

SuperGlue: Learning Feature Matching with Graph Neural Networks

Sarin et al. 2019

SuperGlue: Learning Feature Matching with Graph Neural Networks

Sarin et al. 2019

PixelNeRF (Yu et al. 2020)

BARF: Bundle-Adjusting Neural Radiance Fields
(Lin et al. 2021)

What has changed since Deep Learning?

By and large, we still rely on conventional Bundle Adjustment to solve  
multi-view geometry for us.

 
While relatively reliable, this has major downsides: 

Not online, not robust to scene motion, not amenable to end-to-end learning… 
 

IMO we’re missing the correct way to “learn” multi-view geometry in a self-
supervised way. It should be possible: Build a model that watches video and learns

to reconstruct both pose and a proper 3D scene representation!

Maybe one of you will get there :)

Summary

Given multi-view observations of static scene, we can solve for camera
poses, camera intrinsics, and pretty good 3D geometry.

