## Lecture 15

## Image Formation \& Projective Geometry

## Course Project Notes

- If you don't have access to external compute resources, don't propose a compute-intensive project.
- For (very) small GPU workloads, you can use Google Colab.
- You can buy a bit more compute with a Google Colab Pro subscription (1 month = USD 10) - *still not enough* for compute-intensive projects, runs out very quickly
- We also offer a reimbursement of these USD 10 for those of you for whom this is a prohibitive expense - will post instructions on Piazza
- We also offer USD 50 in Google Cloud credits for *everyone* - instructions on how to obtain these will be posted on Piazza


## Image Formation and Multi-View Geometry



We want to understand 3D world only from 2D observations (images). For that, we need to have a mathematical understanding of how they are connected.

Mathematical model of cameras. Reconstruct camera poses, approximate geometry, and camera parameters from 2D images of a scene.

## Some Slides adapted from...

- CMU 16-889: Learning for 3D Vision Prof. Shubham Tulsiani
- CMU 16-385: Computer Vision Prof. Kris Kitani
- MIT 6.819/6.869: Advances in Computer Vision, Profs. Bill Freeman, Phillip Isola, Antonio Torralba


## What is a 3D scene?


materials, light sources, 3D shape, color, weight, density, friction coefficients, etc

## How do we observe scenes?



An eye (or a camera) observes a subset of all the light rays in a scene.

## The Light Field: 3D coordinate plus ray direction is mapped to the color of that ray.



$$
L F: \mathbb{R}^{3} \times \mathbb{S}^{2} \rightarrow \mathbb{R}^{3}, \quad L F(\mathbf{x}, \mathbf{d})=\mathbf{c}
$$

Why don't we get an image if we hold up a piece of paper?


Every "pixel" on the paper is the average of all the rays in the scene.


## Let's make a Camera!



Idea 1: Put piece of film in front of an object


Add a barrier to block most rays.

## Camera Obscura

- Basic principle known to Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)



## Camera Obscura (Dark Room)



After scouting rooms and reserving one for at least a day, Morell masks the windows except for the aperture. He controls three elements: the size of the hole, with a smaller one yielding a sharper but dimmer image; the length of the exposure, usually eight hours; and the distance from the hole to the surface on which the outside image falls and which he will photograph. He used $4 \times 5$ and $8 \times 10$ view cameras and lenses ranging from 75 to 150 mm .

After he's done inside, it gets harder. "I leave the room and I am constantly checking the weather, I'm hoping the maid reads my note not to come in, I'm worrying that the sun will hit the plastic masking and it will fall down, or that I didn't trigger the lens."
http://www.abelardomorell.net/ project/camera-obscura/

Camera Obscura: View of Central Park Looking West in Bedroom. Summer, 2018

Today: Model the camera, describe the rays.


## Perspective projection



X
Lowercase:

## Perspective projection



Point of observation


What properties of the world are preserved?

- Straight lines, incidence

What properties are not preserved?

- Angles, lengths


## Perspective Projection

## Questions?

## Perspective projection



This is awkward... Not a linear operator.

## Homogeneous coordinates


 coordinates
coordinates

## Homogeneous coordinates



From heterogeneous to homogeneous:

$$
\mathbf{x}=(x, y) \quad \tilde{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
w \cdot x \\
w \cdot y \\
w \cdot 1
\end{array}\right]
$$

From homogeneous to heterogeneous:

$$
\tilde{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \quad \Rightarrow \mathbf{x}=(x / w, y / w)
$$

Homogeneous coordinates


## Questions?

## Perspective projection



This is awkward... Not a linear operator.

## Perspective projection

Heterogeneous coordinates


Image / Pixel
Coordinates
World Coordinates

Homogeneous coordinates

$$
\begin{aligned}
& \text { H20 } \\
& \text { Coordinates }
\end{aligned}
$$

## Perspective projection

Heterogeneous coordinates
$\mathbf{x}=(x, y)=(X, Y) \cdot \frac{1}{Z}$ Image / Pixel Coordinates

World Coordinates

Homogeneous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Image / Pixel Coordinates

World coords.

## Perspective projection

Heterogeneous coordinates
$\mathbf{x}=(x, y)=(X, Y) \cdot \frac{1}{Z}$
Image / Pixel
Coordinates
World Coordinates

Homogeneous coordinates

## Perspective projection

Heterogeneous coordinates
$\mathbf{x}=(x, y)=(X, Y) \cdot \frac{1}{Z}$ Image / Pixel Coordinates

World Coordinates

Homogeneous coordinates

$$
\left[\begin{array}{l}
\mathcal{X} \\
\mathcal{Y} \\
\mathcal{W}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0 \\
\text { mage / Pixel } \\
\text { Coordinates }
\end{array}\right.
$$

## Perspective projection

## Homogeneous coordinates



## Perspective projection

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z / f
\end{array}\right]
$$

Image / Pixel Coordinates

Projection Matrix

World
coords.

$$
\tilde{\mathbf{x}}=\left[\begin{array}{c}
X \\
Y \\
Z / f
\end{array}\right] \Rightarrow \mathbf{x}=\left(f \frac{X}{Z}, f \frac{Y}{Z}\right)
$$

## Perspective projection

$$
\begin{gathered}
\tilde{\mathbf{x}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right] \tilde{\mathbf{x}}=\left[\begin{array}{c}
X \\
Y \\
Z / f
\end{array}\right] \Rightarrow \mathbf{x}=\left(f \frac{X}{Z}, f \frac{Y}{Z}\right) \\
\tilde{\mathbf{x}}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \tilde{\mathbf{x}}=\left[\begin{array}{c}
f \cdot X \\
f \cdot Y \\
Z
\end{array}\right] \Rightarrow \mathbf{x}=\left(f \frac{X}{Z}, f \frac{Y}{Z}\right)
\end{gathered}
$$

## Perspective projection

$$
\tilde{\mathbf{x}}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \tilde{\mathbf{X}}
$$

## Perspective projection



## Questions?

## Perspective projection



## More General Case: Arbitrary Image Centre



## More General Case: Arbitrary Image Centre



How does the projection matrix change?

$$
\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

shift vector transforming camera origin to image origin

## Decomposing the Projection Matrix

We can decompose the projection matrix like this:

$$
\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0
\end{array}\right]
$$

What does each part of the matrix represent?

## Decomposing the Projection Matrix

We can decompose the projection matrix like this:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc:c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0
\end{array}\right]} \\
& \text {, }
\end{aligned}
$$

(homogeneous) transformation from 2D to 2D, accounting for not unit focal length and origin shift

Also written as: $\mathbf{K}[\mathbf{I} \mid \mathbf{0}]$
(homogeneous) perspective projection from 3D to 2D, assuming image plane at z = 1 and shared camera/image origin

$$
\text { where } \mathbf{K}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

## Perspective projection



## In practice: Decoupling Projection from Image Size

$$
K \equiv K_{i m g \rightarrow p i x} K_{c a m \rightarrow i m g}
$$



## Exercise: Focal Length as Function of FOV



## Exercise: Cropping an Image

$$
K_{\text {cam } \rightarrow i m g}
$$

$$
K_{c a m \rightarrow i m g}^{\prime}
$$



$$
K_{\text {cam } \rightarrow \text { img }}^{\prime}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] K_{\text {cam } \rightarrow i m g}
$$

## In practice: Decoupling Projection from Image Size



Helps (conceptually and in implementation) to reason in normalized image coordinates

## Questions?

## Camera parameters



## Camera parameters



In heterogeneous coordinates:

$$
\mathbf{X}_{c}=\mathbf{X}_{w}-\mathbf{t}
$$

## Camera parameters



## Camera parameters



In homogeneous coordinates:

$$
\tilde{\mathbf{X}}_{c}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R t} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{X}}_{w}
$$

## Cam2World vs. World2Cam extrinsic parameters



$$
\begin{aligned}
& \tilde{\mathbf{X}}_{c}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R t} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{X}}_{w}=\mathbf{C}^{W 2 C} \tilde{\mathbf{X}}_{w} \\
& \tilde{\mathbf{X}}_{w}=\left[\begin{array}{cc}
\mathbf{R}^{T} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{X}}_{c}=\left(\mathbf{C}^{W 2 C}\right)^{-1} \tilde{\mathbf{X}}_{c}=\mathbf{C}^{C 2 w} \tilde{\mathbf{X}}_{c}
\end{aligned}
$$

## Camera parameters



World coordinates to camera coordinates

$$
\tilde{\mathbf{X}}_{c}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R t} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{X}}_{w}
$$

Camera coordinates to image coordinates

$$
\tilde{\mathbf{x}}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \tilde{\mathbf{x}}_{c}
$$

## Camera parameters



World coordinates to image coordinates

$$
\tilde{\mathbf{x}}=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right] \tilde{\mathbf{X}}_{w}
$$

## Camera parameters



World coordinates to image coordinates

$$
\tilde{\mathbf{x}}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R t} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{X}}_{w}
$$

## Camera parameters



World coordinates to image coordinates

$$
\tilde{\mathbf{x}}=\underbrace{\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\text {Intrinsic parameters }} \underset{\text { Extrinsic parameters }}{\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{X}}_{w}=\mathbf{P} \tilde{\mathbf{X}}_{w}}
$$

## World2Camera Transformations: Exercise

$$
X_{c}=\left[\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] X_{w} ; \quad \mathbf{t}=-R \tilde{C}
$$

What are R, $t$ for an upright (world and camera y-directions align) origin-facing camera 2 m away from origin located at

$$
(0,0,-2) ?
$$

What are R, $t$ for an upright (world and camera y-directions align) origin-facing camera 2 m away from origin located at $(-2,0,0)$ ?


$$
R=\mathbf{I} ; \quad \mathbf{t}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]
$$

$$
R=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] ; \quad \mathbf{t}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]
$$

## Beware of Conventions


$X=$ left or right? $Y=u p$ or down? etc..

If you externally obtain transformation matrices (e.g. using someone else's code), make sure of convention compatibility (one of the most common sources of bugs!)
read https://pytorch3d.org/docs/ cameras

## Summary



Projection - associating rays to points in a plane


Camera Transformation - from world to camera coordinates

## Questions?

## Vision systems



Two cameras


N cameras


## Let's consider two eyes



Two cameras


N cameras


## Stereo images of the Titanic



(b)
(a)

Figure 1.1: (a) Stereo anaglyph of the ocean liner, the Titanic [McManus2022]. The red image shows the right eye's view, and cyan the left eye's view. When viewed through stereo red/cyan stereo glasses, as in (b), the cyan contrast appears in the left eye image and the red variations appear to the right eye, creating a the perception of 3d.

## Stereoscope



## Depth without objects

Random dot stereograms (Bela Julesz)


Julesz, 1971

## Geometry for a simple stereo system



## Measuring disparity



Left image


Right image

I took one picture, then I moved $\sim 1 \mathrm{~m}$ to the right and took a second picture.

## Measuring disparity



Left image


Right image

## Measuring disparity



## Disparity map



## Next time: Multi-View Geometry



We want to understand 3D world only from 2D observations (images). For that, we need to have a mathematical understanding of how they are connected.

