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Object recognition
s it really so hard”?

Find the chair in this image Output of normalized correlation
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Object recognition
s it really so hard?

Find the chair in this image

Pretty much random detections
Simple template matching is not going to make it



Object recognition
s it really so hard”?

Find the chair in this image

A “popular method is that of template matching, by point to point correlation of a
model pattern with the image pattern. These techniques are inadequate for three-
dimensional scene analysis for many reasons, such as occlusion, changes in viewing
angle, and articulation of parts.” Nivatia & Binford, 1977.



Instances vs. categories

Instance matching Categories
Find a bottle:
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- PEOPLE UNDER THE
SHADOW OF THE TREES



Intuitive physics

[“Learning to See Physics via Visual De-animation”, Wu et al., NIPS 2017]



Intuitive physics

physical world physical world
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[“Learning to See Physics via Visual De-animation”, Wu et al., NIPS 2017]



Scene understanding

Scene understanding is an integrated process

Mezzanotte & Biederman



Scene understanding




A bit of history...



O, let’'s make the problem simpler: Block’s world
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3D, compositional models

Binford and generalized cylinders

Recognition by components

Object Recognition in the Geometric Era: a Retrospective. Joseph L. Mundy. 2006
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Recognition-by-Components: A Theory of Human Image Understanding.

Psychological Review, 1987.

Irving Biederman



A do-it-yourself example

1) We know that this object is nothing we know

3) We can see how it resembles something familiar: “"a hot dog cart”

/ [ , 2) We can split this objects into parts that everybody will agree
g

A

“The naive realism that emerges in descriptions of nonsense objects may be reflecting the workings of a
representational system by which objects are identified.”

Irving Biederman
Recognition-by-Components: A Theory of Human Image Understanding.
Psychological Review, 1987.



Part based models

The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER axp ROBERT A. ELSCHLAGER
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Scene models

Multiple levels of representation -- pixels > patches > regions > subimages > objects
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Fig. 1 Illustration of Levels of Description in
Processing-Unit Hierarchy

MODEL REPRESENTATIONS AND CONTROL STRUCTURES
IN IMAGE UNDERSTANDING

Takeo

Kanade

Department of Information Science
Kyoto University Kyoto, Japan

ABSTRACT

This paper overviews and discusses model re-
presentations and control structures in image under-
standing. Hierarchies are observed in the levels
of description used in image understanding along a
few dimensions: processing unit, detail, composition
and scene/view distinction. Emphasis is placed on
the importance of explicitly handling the hierarchies
both in representing knowledge and in using it. A
scheme of "knowledge block" representation which is
structured along the processing-unit hierarchy is
also presented.

I. INTRODUCTION

Image Understanding System(IUS) constructs a
description of the scene being viewed from an array
of image sensory data: intensity, color, and some-
times range data. Image understanding is best char-
acterized by description, whereas pattern recognit-
ion by classification, and image processing by image
output. The level and scope of the goal description
depend on the task given to the IUS: whether it is
interpretation, object detection, change detection,
image matching, etc. It may appear that the discus-
sion in this paper will take usally the flavor of

scene interpretation from a monocular intensity image.

Observing that there are hierarchies of levels
of description along a few dimensions, this paper
overviews and discusses model representations and
control structures in image understanding. Emphasis
is placed on the importance of explicitly handling
the hierarchies both in representing knowledge
about scenes and in using it, especially processing-
unit hierarchy and scene/view domain distinction.

In the next section, the levels of description
are identified. Then section III gives an overview
and discussion on object-model representations,
together with presentation of our knowledge block
representation scheme. Section IV deals with the
problems of control structure, and finally the role
of low-level processing is discussed in section V.

II. LEVELS OF DESCRIPTION IN IMAGE UNDERSTANDING

Descriptions are not only the goal constructs,
but also the media through which various components
of an IUS communicate in the course of understand-
ing the image. There are a few orthogonal dimensions.

a) Processing-unit Hierarchy

This is a hierarchy in the levels of units
used in processing. Let us identify five levels for
the moment. For a region-based IUS, they are pixel
(an image point), patch(a group of contiguous
pixels having similar pixel properties), region(a
meaningful group of patches corresponding to a sur-
face of an object), subimage(a part of an image

corresponding to an object or a set of objects),
and object(an object as a real entity). For a line-
based IUS, the level of patch can be replaced by
line segment, region by line, and subimage by a set
of lines corresponding to an object, Fig. 1
illustrates these levels for a region-based IUS.

Akin & Reddy(1976) observed that six levels are
used when human subjects understand the contents of
an image through verbal conversation: scéne, cluster,
object, region, segment, and intensity. The number
of levels is not very significant. These levels as
well as those in Fig. 1 depend on the unitson which
different levels of processing are performed and for
whose description different vocabularies are used.
Processing in the pixel-to-patch level is often
called as low-level processing. The region-to-sub-
image level is high level in the picture processing
domain. It clearly needs to deal with semantics
which stem from the highest, object level. The patch-
.to-region level might be called as intermediate.

b) View Domain / Scene Domain Distinction

The point to be noted here is the clear dispar-
ity existing between view-domain and scene-domain
descriptions; in Fig. 1, the lower four levels are
in the view domain and the upper one in scene domain.
The need for this distinction was argued for first
and most effectively by Clowes(1971). He used the
term "picture domain" in place of "view domain".
But the latter is used in this paper to mean the
domain of observable facts by viewing the scene in
either intensity or range data. The importance of
this distinction is readily understood by thinking
that, for example, the actual meaning of "adjacen-
cy" in the view-domain description is fully under-
stood only after the relation is interpreted in the
scene-domain description. Note that the scene-domain
descriptions are not necessarily in a metrical 3-D
coordinate space; e.g., Waltz's labels of edge is a
symbolic system to represent the edge types in the 3-D
space, or even a gross subjective space will suffice.

c) Detail Hierarchy and Composition Hierarchy

The detail hierarchy is along preciseness of
description. It can exist in both the view and the
scene domains. Section 5.2 presents examples in the
view domain. An example in the scene domain is the
description of overall/detail shape of an object,
which is found in section 3.2bk). The composition
(oxr part-of) hierarchy represents part/whole rela-
tionships in the scene domain.

The processing-unit hierarchy actually contains
somewhat both aspects of the detail and composition
hierarchies in the sense that the low-level entities
are parts and details of an upper-level entity.
Unfortunately this revealed hierarchy does not di-
rectly correspond to the hierarchies which natural-
ly exist in the scene domain. This fact makes image
understanding difficult, and it is why the models
often need to represent the natural hierarchies
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Neural Network-Based Face Detector
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Viola-dones Face Detector

Haar filters, integral image and boostin

Viola and Jones, ICCV 2001

Integral image
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ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001

Rapid Object Detection using a Boosted Cascade of Simple
Features

Paul Viola
viola@merl.com
Mitsubishi Electric Research Labs
201 Broadway, 8th FL
Cambridge, MA 02139

Abstract

This paper describes a machine learning approach for vi-
sual object detection which is capable of processing images
extremely rapidly and achieving high detection rates. This
work is distinguished by three key contributions. The first
is the introduction of a new image representation called the
“Integral Image” which allows the features used by our de-
tector to be computed very quickly. The second is a learning
algorithm, based on AdaBoost, which selects a small num-
ber of critical visual features from a larger set and yields
extremely efficient classifiers[6]. The third contribution is
a method for combining increasingly more complex classi-
fiersin a “cascade” which allows background regions of the
image to be quickly discarded while spending more compu-
tation on promising object-like regions. The cascade can be
viewed as an object specific focus-of-attention mechanism
which unlike previous approaches provides statistical guar-
antees that discarded regions are unlikely to contain the ob-
Ject of interest. In the domain of face detection the system
yields detection rates comparable to the best previous sys-
tems. Used in real-time applications, the detector runs at
15 frames per second without resorting to image differenc-
ing or skin color detection.

1. Introduction

This paper brings together new algorithms and insights to
construct a framework for robust and extremely rapid object
detection. This framework is demonstrated on, and in part
motivated by, the task of face detection. Toward this end
we have constructed a frontal face detection system which
achieves detection and false positive rates which are equiv-
alent to the best published results [16, 12, 15, 11, 1]. This
face detection system is most clearly distinguished from
previous approaches in its ability to detect faces extremely
rapidly. Operating on 384 by 288 pixel images, faces are de-

The average intensity in the block is computed with four

sums independently of the block size.

Michael Jones
mjones@crl.dec.com
Compaq CRL
One Cambridge Center
Cambridge, MA 02142

tected at 15 frames per second on a conventional 700 MHz
Intel Pentium III. In other face detection systems, auxiliary
information, such as image differences in video sequences,
or pixel color in color images, have been used to achieve
high frame rates. Our system achieves high frame rates
working only with the information present in a single grey
scale image. These alternative sources of information can
also be integrated with our system to achieve even higher
frame rates.

There are three main contributions of our object detec-
tion framework. We will introduce each of these ideas
briefly below and then describe them in detail in subsequent
sections.

The first contribution of this paper is a new image repre-
sentation called an integral image that allows for very fast
feature evaluation. Motivated in part by the work of Papa-
georgiou et al. our detection system does not work directly
with image intensities [10]. Like these authors we use a
set of features which are reminiscent of Haar Basis func-
tions (though we will also use related filters which are more
complex than Haar filters). In order to compute these fea-
tures very rapidly at many scales we introduce the integral
image representation for images. The integral image can be
computed from an image using a few operations per pixel.
Once computed, any one of these Harr-like features can be
computed at any scale or location in constant time.

The second contribution of this paper is a method for
constructing a classifier by selecting a small number of im-
portant features using AdaBoost [6]. Within any image sub-
window the total number of Harr-like features is very large,
far larger than the number of pixels. In order to ensure fast
classification, the learning process must exclude a large ma-
jority of the available features, and focus on a small set of
critical features. Motivated by the work of Tieu and Viola,
feature selection is achieved through a simple modification
of the AdaBoost procedure: the weak learner is constrained
so that each weak classifier returned can depend on only a



Bag of words models

« SIFT: Scale Invariant Feature Transform

» Normalized histogram of orientation

energy in each affinely adapted region
(128-dim.)

Images represented as affine covariant regions:

Harris affine invariant regions (corners & edges)

Maximally stable extremal regions

(segmentation)

Csurka, Dance, Fan, Willamowski, and Bray 2004
Sivic, Russell, Freeman, Zisserman, ICCV 2005

Image gradients Keypoint descriptor

D. Lowe, IJCV 2004



Histograms of oriented gradients (HOG

2005

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

1. Bin gradients from 8x8 pixel neighborhoods into 9 orientations
2. Linear SVM
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Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs
INRIA Rhone-Alps, 655 avenue de 1I’Europe, Montbonnot 38334, France
{Navneet.Dalal,Bill. Triggs } @inrialpes.fr, http://lear.inrialpes.fr

Abstract

We study the question of feature sets for robust visual ob-
Jject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and backgrounds.

1 Introduction

Detecting humans in images is a challenging task owing
to their variable appearance and the wide range of poses that
they can adopt. The first need is a robust feature set that
allows the human form to be discriminated cleanly, even in
cluttered backgrounds under difficult illumination. We study
the issue of feature sets for human detection, showing that lo-
cally normalized Histogram of Oriented Gradient (HOG) de-
scriptors provide excellent performance relative to other ex-
isting feature sets including wavelets [17,22]. The proposed
descriptors are reminiscent of edge orientation histograms
[4,5], SIFT descriptors [12] and shape contexts [1], but they
are computed on a dense grid of uniformly spaced cells and
they use overlapping local contrast normalizations for im-
proved performance. We make a detailed study of the effects
of various implementation choices on detector performance,
taking “pedestrian detection” (the detection of mostly visible
people in more or less upright poses) as a test case. For sim-
plicity and speed, we use linear SVM as a baseline classifier
throughout the study. The new detectors give essentially per-
fect results on the MIT pedestrian test set [18,17], so we have
created a more challenging set containing over 1800 pedes-
trian images with a large range of poses and backgrounds.
Ongoing work suggests that our feature set performs equally
well for other shape-based object classes.

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summarized in §7.

2 Previous Work

There is an extensive literature on object detection, but
here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou et
al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of learned exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola et al [22] build an efficient
moving person detector, using AdaBoost to train a chain of
progressively more complex region rejection rules based on
Haar-like wavelets and space-time differences. Ronfard et
al [19] build an articulated body detector by incorporating
SVM based limb classifiers over 1** and 2™ order Gaussian
filters in a dynamic programming framework similar to those
of Felzenszwalb & Huttenlocher [3] and Ioffe & Forsyth
[9]. Mikolajczyk et al [16] use combinations of orientation-
position histograms with binary-thresholded gradient magni-
tudes to build a parts based method containing detectors for
faces, heads, and front and side profiles of upper and lower
body parts. In contrast, our detector uses a simpler archi-
tecture with a single detection window, but appears to give
significantly higher performance on pedestrian images.

3 Overview of the Method

This section gives an overview of our feature extraction
chain, which is summarized in fig. 1. Implementation details
are postponed until §6. The method is based on evaluating
well-normalized local histograms of image gradient orienta-
tions in a dense grid. Similar features have seen increasing
use over the past decade [4,5,12,15]. The basic idea is that
local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients or
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Families of recognition algorithms

Shape matching

Bag of words models Voting models_ - Deformable models
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Viola and Jones, ICCV 2001

Csurka, Dance, Fan, Willamowski, and Bray 2004 Heisele, Poggio, et. al., NIPS 01

Sivic, Russell, Freeman, Zisserman, Sc_hnelderman, Kanade 2004 Berg, Berg, Malik, 2005

ICCV 2005 Vidal-Naquet, Ullman 2003 Cootes, Edwards, Taylor, 2001
Constellation models Rigid template models

Neural networks

weighted weighted

192 128 Max

| Input image

pos wis neg wis pooling
: Sirovich and Kirby 1987
Fischler and Elschlager, 1973
Burl, Leung, and Pergna, 1995 Turk, Pentland, 1991 Le Cun et al, 98
Weber, Welling, and Perona, 2000 Dalal & Triggs, 2006
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ImageNet classification and Neural nets

14,197,122 images, 21841 synsets indexed

IMSAGENET

Explore Download Challenges Publications CoolStuff About

Not logged in. Login | Signup

ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns),
in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have
an average of over five hundred images per node. We hope ImageNet will become a useful resource for
researchers, educators, students and all of you who share our passion for pictures.

Click here to learn more about ImageNet, Click here to join the ImageNet mailing list.
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Image Classification

Is object class ¢ present anywhere in the image x?

Is there a car 1n this 1image?
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Image Classification: formulation

Lecture 6
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Image Classification: evaluation

Classification performance (Top-n)

Predicted class true class

100 < e
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Percentage of times that true class
IS correctly identified.




Image Classification: evaluation

Classification performance (Top-n)

Predicted class true class

'\

100 Z ]l(y(t) =y(t))

TOP-1 =

Percentage of times that true class
IS correctly identified.

T
Cij= 100221

Confusion matrix

Predicted class

\

true class
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where Cj jmeasures the percentage of times
that true class / is classified as class .

Predicted class

True class

Cat | Car | Dog
Cat | 80% | S% | 15%
Car | 2% | 95% | 3%
Dog | 4% | 0% | 96%

— Y =100%
— Y =100%
-3 =100%



Image Classification: shortcomings

Ground truth-annotation: Indicate which images contain a car

“Clap” if you see a car

Ready?







































Image Classification: shortcomings

What is a car?

The data represents
the formulation
- of the problem.

There is ambiguity even for very familiar concepts



s there a fruit in this picture?

A pepper is a fruit
according to botanics, and
it Is a vegetable according

. to the culinary classification.




Which level of categorization is the right one?
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If you are thinking in buying a car, you might want to be a bit more specific about
your categorization.



Entry-level categories
(Jolicoeur, Gluck, Kosslyn 1984)

- Typical member of a basic-level category are categorized at the expected level

» Atypical members tend to be classified at a subordinate level.




Class experiment



Class experiment

Experiment 1: draw a horse (the entire body,
not just the head) in a white piece of paper.

Do not look at your neighbor! You already know
how a horse looks like... no need to cheat.




Class experiment

Experiment 2: draw a horse (the entire
body, not just the head) but this time chose
a viewpoint as weird as possible.




View typicality

£ | , : . ol ‘-gﬁ “"‘“"Vw‘;‘* 2 : - Y% Greg“Roio'b‘ins
Despite we can categorize all three pictures as being views of a horse, the three pictures do not look as being
equally typical views of horses. And they do not seem to be recognizable with the same easiness.



Canonical Perspective

Examples of canonical perspective:

Experiment (Palmer, Rosch & Chase 81):
participants are shown views of an object
and are asked to rate "how much each one .
looked like the objects they depict” Homse - e

(scale; 1=very much like, 7=very unlike)
g -

CAR CHAIR CAMERA

In a recognition task, reaction time
correlated with the ratings.

TELEPHONE HOUSE

PENCIL SHARPENER SHOE

From Vision Science, Palmer



Canonical Viewpoint

Clocks are preferred as purely frontal

< ;O Ugle clock Search Images Search the Web ';?;Z?::;Lmsqg S

Moderate SafeSearch is on

Images Showing: Allimage sizes !ﬂ Results 1 - 18 of about 38,300,000 for

Related searches: cartoon clock clock clipart alarm clock clock face

,. “ 12 l
710 2%
:',9 ’\ ,}.‘
Il{\iﬁ,‘8 4*
7.,: :@ ::5 l-
clock character Wind-up alarm clocks have been Artistic Clock And Wall Clock ... mechanical clock If it is 3 o’clock and we add 5 ...
359 x 344 - 4k - gif 360 x 360 - 18k - |pg screensaver. 305 x 319 - 4k - gif
school.discoveryeducation.com 346 x 510 - 22k - |pg www_global-b2b-network.com 640 x 480 - 53k - |pg www-math_cudenver.edu
electronics_howstuffworks.com davinciautomata.wordpress.com [ More from




mug

fi t
Search SafeSearch moderate ¥

About 10,100,000 results (0.09 seconds)

59¢ Logo Coffee Mugs

www.DiscountMugs.com Lead Free & Dishwasher
Safe. Save 40-50%. No Catch. Factory Direct !

Custom Mugs On Sale

Logos.

Related searches: white mug coffee mug mug root beer mug shot

Representational
500 x 429 - 91k - jpg

eagereyes.org
Find similar images

Bring your own

500 x 451 - 15k - jpg
cookstownunited.ca
Find similar images

o oty

Back to Ceramic
400 x 400 - 8k - jpg

freshpromotions.com.au

Find similar images

Ceramic Happy Face
300 x 300 - 77k - jpg
larose.com beeper.wordpress.com

Here | go then, trying
600 x 600 - 35k - jpg

Find similar images Find similar images

ceramic mug
980 x 1024 - 30k - jpg
diytrade.com

Dual Purpose Drinking
490 x 428 - 16k - jpg
freshome.com

Find similar images

SASS Life Member
300 x 302 - 6k - jpg
sassnet.com

Coffee Mug as a

303 x 301 - 10k - jpg
dustbowl.wordpress.com
Find similar images

Mugs from LabelMe

www.Vistaprint.com Order Now & Save 50% On www.4imprint.com/Mugs Huge Selection of Style
Custom Mugs No Minimums. Upload Photos &

Advanced search

Google mugs

Promotional Mugs from 69¢ Sponsoret

Colors- Buy 72 Mugs @ $1.35 ea-24hr Service

Dataset biases

The Chalk Mug » mug
300 x 279 - 54k - jpg
reynosawatch.org

304 x 314 - 17k - jpg
coolest-gadgets.com
Find similar images

This coffee mug,
300 x 300 - 22k - jp
gizmodo.com

Find similar images
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personalized coffee
400 x 343 - 15k - jp
walyou.com

Find similar images



What is a chair?

Sittable-upon gjttable-upon It does not seem easy
to sit-upon this...

Sittable-upon

Some aspects of an object function can be perceived directly

* Functional form: Some forms clearly indicate to a function
(“sittable-upon”, container, cutting device, ...)



Other questions

What if the object is present in the scene but invisible in the image?
What if there are infinite classes?

Is it possible to classify an image without localizing the object? How can we
answer to the question “is object ¢ present in the image?" without
localizing the object?

Image classification performance could mislead us into believing that the
classifier works, but it could be learning spurious correlations.



Object localization

Draw a box around each of the instances of class c in the input image.

Locate all cars in this image
—l 171
A
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PASCAL Visual Object Challenge

: personTrunc
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20 Object classes: aeroplane bike bird boat bottle bus car cat chair cow table dog horse motorbike person plant sheep sofa train tv

5000 training images
5000 testing images

Competition from 2005 - 2012

http://host.robots.ox.ac.uk/pascal/VOC/



Object localization: formulation

Our goal is a function f that outputs a set of bounding boxes, b, and their classes vy:

\
X — f . {yi.b;)
—

v b} =
{yi, bi} =f(x) b= [x1, 1,00, 32



Turning localization into classification

Region Proposals
Input image (patches)




Turning localization into classification

Input Image

I -
LA R AEET T -

Region Proposals
(patches)

q Classify each patch




Turning localization into classification




Turning localization into classification

Window scanning approach

This can be computationally expensive



Turning localization into classification



Turning localization into classification

Selective search

Candidate bounding boxes

| — M

Selective search makes the process more efficient by proposing an initial set of
bounding boxes that are good candidates to contain an object.



Turning localization into classification

Window scanning Bounding box proposals
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Turning localization into classification

X1

Region
Proposals

Jo

Loss function:

L{bi, i}, (bi,yi)) = LasFir yi) + AL(y; #0)Lioe(bi, by)
N

K
£Cls(y,-, y,') = — E Vei l()g(yc’l-) We need a way to measure how
c=1

different are two bounding boxes



Measuring similarity between bounding boxes

One typical measure of similarity between two bounding boxes is the Intersection over Union (loU)

b2

Intersection




Turning localization into classification

X1

Region
Proposals

Jo

LAbi, vt biyi)=Lasi, yi) + A (y; #0) Lioe(bs, b))

K
Las¥iny)=—) Yeilog(e.) Lioc(b, b)=1-10oU(b, b)
c=1

Lioc(b, b)= (%1 —x1)* + G2 = x2)> + 51 =y1)> + (52 = y2)?



Measuring similarity between bounding boxes

2

1-IoU

-

0.5 x-displacement 1 1.



Non-maximal suppression

Window scanning Bounding box proposals High-scoring detections
— _,

AR
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Non-maximal suppression

Window scanning

1. Take the highest confidence bounding box from the set S and add it to the final set S*

2. Remove from S the selected bounding box and all the bounding boxes with an loU
larger than a threshold.

3. go to step 1 until S is empty.
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Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. We also compare R-CNN to OverFeat, a recently
proposed sliding-window detector based on a similar CNN
architecture. We find that R-CNN outperforms OverFeat
by a large margin on the 200-class ILSVRC2013 detection
dataset. Source code for the complete system is available at
http://www.cs.berkeley.edu/~rbg/rcnn.

1. Introduction

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [29] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [15], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-

R-CNN: Regions with CNN features

e warped region s aeroplane? no. |
i v o p) :
S SAL = !
[ == - _person? yes.
h»ﬁ" 4+ C:ﬁ'\ :
— 4 4 -
2 ¥ -ﬂﬁm—
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [39] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.
On the 200-class ILSVRC2013 detection dataset, R-CNN’s
mAP is 31.4%, a large improvement over OverFeat [34], which
had the previous best result at 24.3%.

archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [19], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training
algorithm. Building on Rumelhart et al. [33], LeCun et
al. [26] showed that stochastic gradient descent via back-
propagation was effective for training convolutional neural
networks (CNNss), a class of models that extend the neocog-
nitron.

CNNs saw heavy use in the 1990s (e.g., [27]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [25] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(z, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously

https://arxiv.org/pdf/1311.2524.pdf
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Abstract

This paper proposes a Fast Region-based Convolutional
Network method (Fast R-CNN) for object detection. Fast
R-CNN builds on previous work to efficiently classify ob-
Jject proposals using deep convolutional networks. Com-
pared to previous work, Fast R-CNN employs several in-
novations to improve training and testing speed while also
increasing detection accuracy. Fast R-CNN trains the very
deep VGG16 network 9 faster than R-CNN, is 213 X faster
at test-time, and achieves a higher mAP on PASCAL VOC
2012. Compared to SPPnet, Fast R-CNN trains VGG16 3%
faster, tests 10X faster, and is more accurate. Fast R-CNN
is implemented in Python and C++ (using Caffe) and is
available under the open-source MIT License at https :
//github.com/rbgirshick/fast—-rcnn.

1. Introduction

Recently, deep ConvNets [14, 16] have significantly im-
proved image classification [14] and object detection [9, 19]
accuracy. Compared to image classification, object detec-
tion is a more challenging task that requires more com-
plex methods to solve. Due to this complexity, current ap-
proaches (e.g., [9, 11, 19, 25]) train models in multi-stage
pipelines that are slow and inelegant.

Complexity arises because detection requires the ac-
curate localization of objects, creating two primary chal-
lenges. First, numerous candidate object locations (often
called “proposals”) must be processed. Second, these can-
didates provide only rough localization that must be refined
to achieve precise localization. Solutions to these problems
often compromise speed, accuracy, or simplicity.

In this paper, we streamline the training process for state-
of-the-art ConvNet-based object detectors [, 11]. We pro-
pose a single-stage training algorithm that jointly learns to
classify object proposals and refine their spatial locations.

The resulting method can train a very deep detection
network (VGG16 [20]) 9x faster than R-CNN [9] and 3 X
faster than SPPnet [11]. At runtime, the detection network
processes images in 0.3s (excluding object proposal time)

while achieving top accuracy on PASCAL VOC 2012 [7]
with a mAP of 66% (vs. 62% for R-CNN).!

1.1. R-CNN and SPPnet

The Region-based Convolutional Network method (R-
CNN) [9] achieves excellent object detection accuracy by
using a deep ConvNet to classify object proposals. R-CNN,
however, has notable drawbacks:

1. Training is a multi-stage pipeline. R-CNN first fine-
tunes a ConvNet on object proposals using log loss.
Then, it fits SVMs to ConvNet features. These SVMs
act as object detectors, replacing the softmax classi-
fier learnt by fine-tuning. In the third training stage,
bounding-box regressors are learned.

2. Training is expensive in space and time. For SVM
and bounding-box regressor training, features are ex-
tracted from each object proposal in each image and
written to disk. With very deep networks, such as
VGG16, this process takes 2.5 GPU-days for the 5k
images of the VOCO7 trainval set. These features re-
quire hundreds of gigabytes of storage.

3. Object detection is slow. At test-time, features are

extracted from each object proposal in each test image.
Detection with VGG16 takes 47s / image (on a GPU).

R-CNN is slow because it performs a ConvNet forward
pass for each object proposal, without sharing computation.
Spatial pyramid pooling networks (SPPnets) [11] were pro-
posed to speed up R-CNN by sharing computation. The
SPPnet method computes a convolutional feature map for
the entire input image and then classifies each object pro-
posal using a feature vector extracted from the shared fea-
ture map. Features are extracted for a proposal by max-
pooling the portion of the feature map inside the proposal
into a fixed-size output (e.g., 6 x 6). Multiple output sizes
are pooled and then concatenated as in spatial pyramid pool-
ing [15]. SPPnet accelerates R-CNN by 10 to 100x at test
time. Training time is also reduced by 3 x due to faster pro-
posal feature extraction.

L All timings use one Nvidia K40 GPU overclocked to 875 MHz.

https://arxiv.org/pdf/1504.08083.pdf

Faster R-CNN: Towards Real-Time Obiject
Detection with Region Proposal Networks

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun

Abstract—State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations.
Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region
proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image
convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional

made publicly available.

network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to
generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN
into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with
“attention” mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3],
our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection
accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO
2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been

Index Terms—Object Detection, Region Proposal, Convolutional Neural Network.

[cs.CV] 6 Jan 2016

1 INTRODUCTION

€7 Recent advances in object detection are driven by
the success of region proposal methods (e.g., [4])
and region-based convolutional neural networks (R-
<t CNNi) [5]. Although region-based CNNs were com-
= putationally expensive as originally developed in [5],
O their cost has been drastically reduced thanks to shar-
\O ing convolutions across proposals [1], [2]. The latest
(O incarnation, Fast R-CNN [2], achieves near real-time
) rates using very deep networks [3], when ignoring the
L time spent on region proposals. Now, proposals are the
~ test-time computational bottleneck in state-of-the-art
SZ detection systems.
«  Region proposal methods typically rely on inex-
3 pensive features and economical inference schemes.
Selective Search [4], one of the most popular meth-
ods, greedily merges superpixels based on engineered
low-level features. Yet when compared to efficient
detection networks [2], Selective Search is an order of
magnitude slower, at 2 seconds per image in a CPU
implementation. EdgeBoxes [6] currently provides the
best tradeoff between proposal quality and speed,
at 0.2 seconds per image. Nevertheless, the region
proposal step still consumes as much running time
as the detection network.

O7v

o S. Ren is with University of Science and Technology of China, Hefei,
China. This work was done when S. Ren was an intern at Microsoft
Research. Email: sqren@mail.ustc.edu.cn

e K. He and ]. Sun are with Visual Computing Group, Microsoft
Research. E-mail: {kahe,jiansun}@microsoft.com

e R. Girshick is with Facebook Al Research. The majority of this work
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One may note that fast region-based CNNs take
advantage of GPUs, while the region proposal meth-
ods used in research are implemented on the CPU,
making such runtime comparisons inequitable. An ob-
vious way to accelerate proposal computation is to re-
implement it for the GPU. This may be an effective en-
gineering solution, but re-implementation ignores the
down-stream detection network and therefore misses
important opportunities for sharing computation.

In this paper, we show that an algorithmic change—
computing proposals with a deep convolutional neu-
ral network—leads to an elegant and effective solution
where proposal computation is nearly cost-free given
the detection network’s computation. To this end, we
introduce novel Region Proposal Networks (RPNs) that
share convolutional layers with state-of-the-art object
detection networks [1], [2]. By sharing convolutions at
test-time, the marginal cost for computing proposals
is small (e.g., 10ms per image).

Our observation is that the convolutional feature
maps used by region-based detectors, like Fast R-
CNN, can also be used for generating region pro-
posals. On top of these convolutional features, we
construct an RPN by adding a few additional con-
volutional layers that simultaneously regress region
bounds and objectness scores at each location on a
regular grid. The RPN is thus a kind of fully convo-
lutional network (FCN) [7] and can be trained end-to-
end specifically for the task for generating detection
proposals.

RPN are designed to efficiently predict region pro-
posals with a wide range of scales and aspect ratios. In
contrast to prevalent methods [8], [9], [1], [2] that use

https://arxiv.org/pdf/1506.01497.pdf
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Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.”
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Object segmentation

We can try to classify each pixel in an image with an object class. Per-pixel classification of object
labels is referred to as semantic segmentation.

|s object class ¢ present in the pixel [n,m]7

Input is an array (image) X— f —Yy Output is an array (segmentation)







ADE20K

Images  ODbj. inst. Obj. classes Part inst. Part classes ODbj. classes
per image

COCO 123,287 886,284 91 0 0 3.5
ImageNet™ 476,688 534,309 200 0 0 1.7
NYU Depth V2 1,449 34,064 894 0 0 14.1
Cityscapes 25,000 N/A 30 0 0 N/A
SUN 16,873 313,884 4,479 0 0 9.8
OpenSurfaces 22,214 71,460 160 0 0 N/A
PascalContext 10,103 ~104,398™* 540 181,770 40 5.1
ADE20K 22,000 415,099 2,944 171,148 354 10.5

* has only bounding boxes (no pixel-level segmentation). Sparse annotations.
** PascalContext dataset does not have instance segmentation. In order to estimate the number of
instances, we find connected components (having at least 150pixels) for each class label.



Fully Convolutional Networks

Fully Convolutional Networks for Semantic Segmentation
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Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. QOur key insight is to build “fully convolutional”
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networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [22],
the VGG net [34], and GoogLeNet [35]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [5] to the segmentation task. We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
of-the-art segmentation of PASCAL VOC (20% relative im-
provement to 62.2% mean IU on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [22, 34, 35], but also making progress on lo-
cal tasks with structured output. These include advances
in bounding box object detection [32, 12, 19], part and key-
point prediction [42, 26], and local correspondence [26, 10].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[30,3,9,31, 17,15, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

* Authors contributed equally

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [30, 3, 9, 31, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [9, 1 7], proposals [17, 15],
or post-hoc refinement by random fields or local classifiers
[9, 17]. Our model transfers recent success in classifica-
tion [22, 34, 35] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[9, 31, 30].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
hierarchies encode location and semantics in a nonlinear



Encoder-decoder architectures

Skip connections

Decoder

Convolutions Deconvolutions



Encoder-decoder architectures

SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image
Segmentation

RGB Image

Convolutional Encoder-Decoder

Pooling Indices

B Pooling I Upsampling

B conv + Batch Normalisation + RelLU

Softmax

polla, Senior Member, IEEE,

Output

Segmentation

k architecture for semantic pixel-wise segmentation
etwork, a corresponding decoder network followed
logically identical to the 13 convolutional layers in the
encoder feature maps to full input resolution feature
ich the decoder upsamples its lower resolution input
X-pooling step of the corresponding encoder to

The upsampled maps are sparse and are then
oposed architecture with the widely adopted FCN
This comparison reveals the memory versus

designed to be efficient both in terms of memory and
trainable parameters than other competing

e also performed a controlled benchmark of SegNet
entation tasks. These quantitative assessments
most efficient inference memory-wise as compared
eb demo at http://mi.eng.cam.ac.uk/projects/segnet/.

2ntation, Indoor Scenes, Road Scenes, Encoder,

and understand the spatial-relationship (context) be-
ent classes such as road and side-walk. In typical road
majority of the pixels belong to large classes such
ilding and hence the network must produce smooth
ns. The engine must also have the ability to delineate
ed on their shape despite their small size. Hence it is
0 retain boundary information in the extracted image
on. From a computational perspective, it is necessary
work to be efficient in terms of both memory and
n time during inference. The ability to train end-to-end
jointly optimise all the weights in the network using
weight update technique such as stochastic gradient

his is primarily because max pooling and sub-sampling reduce
feature map resolution. Our motivation to design SegNet arises
from this need to map low resolution features to input resolution
for pixel-wise classification. This mapping must produce features
which are useful for accurate boundary localization.

Our architecture, SegNet, is designed to be an efficient ar-
chitecture for pixel-wise semantic segmentation. It is primarily
motivated by road scene understanding applications which require
the ability to model appearance (road, building), shape (cars,

e V. Badrinarayanan, A. Kendall, R. Cipolla are with the Machine Intelli-
gence Lab, Department of Engineering, University of Cambridge, UK.
E-mail: vb292,agk34,cipolla@eng.cam.ac.uk

D) [17] is an additional benefit since it is more easily
pie. The design of SegNet arose from a need to match these
criteria.

The encoder network in SegNet is topologically identical to
the convolutional layers in VGG16 [I]. We remove the fully
connected layers of VGG16 which makes the SegNet encoder
network significantly smaller and easier to train than many other
recent architectures [2]], [4], [11], [18]. The key component of
SegNet is the decoder network which consists of a hierarchy
of decoders one corresponding to each encoder. Of these, the
appropriate decoders use the max-pooling indices received from
the corresponding encoder to perform non-linear upsampling of
their input feature maps. This idea was inspired from an archi-
tecture designed for unsupervised feature learning [19]. Reusing
max-pooling indices in the decoding process has several practical



Object segmentation: shortcomings

We can not count objects!




Instance segmentation

We can try to classify each pixel in an image with an object class. Per-pixel classification of object
labels is referred to as semantic segmentation.

|s instance / of object class ¢ present in the pixel [n,m]?

Input is an array (image) X— f —Yy Output is an array (segmentation)
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Instance segmentation




Approaches

InstanceCut, DWT, SAIS, DIN, FCIS, SGN, Mask-RCNN, PANet etc.

Watershed Transform Net

Direction Net
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PANet [L|u et al, CVPR 18]



Solution:

Combine classification, regions proposal and segmentation
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Mask R-CNN

RolAlign

conv

conv
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Mask R-CNN
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Facebook Al Research (FAIR)

Abstract

We present a conceptually simple, flexible, and general
framework for object instance segmentation. Our approach
efficiently detects objects in an image while simultaneously
generating a high-quality segmentation mask for each in-
stance. The method, called Mask R-CNN, extends Faster
R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recogni-
tion. Mask R-CNN is simple to train and adds only a small
overhead to Faster R-CNN, running at 5 fps. Moreover,
Mask R-CNN is easy to generalize to other tasks, e.g., al-
lowing us to estimate human poses in the same framework.
We show top results in all three tracks of the COCO suite
of challenges, including instance segmentation, bounding-
box object detection, and person keypoint detection. With-
out bells and whistles, Mask R-CNN outperforms all ex-
isting, single-model entries on every task, including the
COCO 2016 challenge winners. We hope our simple and
effective approach will serve as a solid baseline and help
ease future research in instance-level recognition. Code
has been made available at: https://github.com/
facebookresearch/Detectron.

1. Introduction

The vision community has rapidly improved object de-
tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [12, 36] and Fully Convolutional Network (FCN) [30]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-
Ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic

Figure 1. The Mask R-CNN framework for instance segmentation.

segmentation, where the goal is to classify each pixel into
a fixed set of categories without differentiating object in-
stances.! Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[36] by adding a branch for predicting segmentation masks
on each Region of Interest (Rol), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each Rol, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-
CNN was not designed for pixel-to-pixel alignment be-
tween network inputs and outputs. This is most evident in
how RolPool [18, 12], the de facto core operation for at-
tending to instances, performs coarse spatial quantization
for feature extraction. To fix the misalignment, we pro-
pose a simple, quantization-free layer, called RolAlign, that
faithfully preserves exact spatial locations. Despite being

IFollowing common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.

https://arxiv.org/abs/1703.06870




Panoptic Segmentation

Instance detection panoptic segmentation:
stuff and things are solved, instances distinguishable



Unified Panoptic Segmentation Network (UPSNet)
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Scene understanding
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laskonomy
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Taskonomy: Disentangling Task Transfer Learning
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Abstract

Do visual tasks have a relationship, or are they unre-
lated? For instance, could having surface normals sim-
plify estimating the depth of an image? Intuition answers
these questions positively, implying existence of a structure
among visual tasks. Knowing this structure has notable val-
ues; it is the concept underlying transfer learning and pro-
vides a principled way for identifying redundancies across
tasks, e.g., to seamlessly reuse supervision among related
tasks or solve many tasks in one system without piling up
the complexity.

We proposes a fully computational approach for model-
ing the structure of space of visual tasks. This is done via
finding (first and higher-order) transfer learning dependen-
cies across a dictionary of twenty six 2D, 2.5D, 3D, and
semantic tasks in a latent space. The product is a computa-
tional taxonomic map for task transfer learning. We study
the consequences of this structure, e.g. nontrivial emerged
relationships, and exploit them to reduce the demand for la-
beled data. For example, we show that the total number of
labeled datapoints needed for solving a set of 10 tasks can
be reduced by roughly % (compared to training indepen-
dently) while keeping the performance nearly the same. We
provide a set of tools for computing and probing this taxo-
nomical structure including a solver that users can employ
to devise efficient supervision policies for their use cases.

1. Introduction

Object recognition, depth estimation, edge detection,
pose estimation, etc are examples of common vision tasks
deemed useful and tackled by the research community.
Some of them have rather clear relationships: we under-
stand that surface normals and depth are related (one is a
derivate of the other), or vanishing points in a room are use-
ful for orientation. Other relationships are less clear: how
keypoint detection and the shading in a room can, together,
perform pose estimation.
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Figure 1: A sample task structure discovered by the computational
task taxonomy (faskonomy). It found that, for instance, by combining the
learned features of a surface normal estimator and occlusion edge detector,
good networks for reshading and point matching can be rapidly trained
with little labeled data.

The field of computer vision has indeed gone far without
explicitly using these relationships. We have made remark-
able progress by developing advanced learning machinery
(e.g. ConvNets) capable of finding complex mappings from
X to Y when many pairs of (z,y) st. z € X,y € Y are
given as training data. This is usually referred to as fully su-
pervised learning and often leads to problems being solved
in isolation. Siloing tasks makes training a new task or a
comprehensive perception system a Sisyphean challenge,
whereby each task needs to be learned individually from
scratch. Doing so ignores their quantifiably useful relation-
ships leading to a massive labeled data requirement.

Alternatively, a model aware of the relationships among
tasks demands less supervision, uses less computation, and
behaves in more predictable ways. Incorporating such
a structure is the first stepping stone towards develop-
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https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/media/pose_face_hands.gif



Dataset Examples




VGA cameras

HD cameras

Kinects
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https://arxiv.org/pdf/1612.03153.pdf






Zhe Cao Tomas Simon

{zhecao, shihenw}@cmu.edu

Abstract

an approach to efficiently detect the 2D pose
ple in an image. The approach uses a non-
resentation, which we refer to as Part Affinity
to learn to associate body parts with individ-
age. The architecture encodes global con-
a greedy bottom-up parsing step that main-
tracy while achieving realtime performance,
the number of people in the image. The ar-
esigned to jointly learn part locations and
on via two branches of the same sequential
tess. Our method placed first in the inaugu-
6 keypoints challenge, and significantly ex-
ous state-of-the-art result on the MPII Multi-
lark, both in performance and efficiency.
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' pose estimation—the problem of localizing
fpoints or “parts”—has largely focused on
arts of individuals (2, 4, 3,21, 33, 13, 25, 31,
g the pose of multiple people in images, es-
y engaged individuals, presents a unique set
First, each image may contain an unknown
ple that can occur at any position or scale.
stions between people induce complex spa-
g, due to contact, occlusion, and limb articu-
rassociation of parts difficult. Third, runtime
ds to grow with the number of people in the
U . |4 realtime performance a challenge.

approach [23, 9, 27, 12, 19] is to employ
M tor and perform single-person pose estima-
| Jetection. These top-down approaches di-
‘existing techniques for single-person pose
y 31, 18, 28, 29, 7, 30, 5, 6, 20], but suffer

N ~ nmitment: if the person detector fails—as it
_ .\, when people are in close proximity—there is
\ = recovery. Furthermore, the runtime of these

pttps://youtu.be/pWenZXeWlGCM
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Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields *

Yaser Sheikh

{tsimon, yaser}@cs.cmu.edu

Figure 1. Top: Multi-person pose estimation. Body parts belong-
ing to the same person are linked. Bottom left: Part Affinity Fields
(PAFs) corresponding to the limb connecting right elbow and right
wrist. The color encodes orientation. Bottom right: A zoomed in
view of the predicted PAFs. At each pixel in the field, a 2D vector
encodes the position and orientation of the limbs.

top-down approaches is proportional to the number of peo-
ple: for each detection, a single-person pose estimator is
run, and the more people there are, the greater the computa-
tional cost. In contrast, bottom-up approaches are attractive
as they offer robustness to early commitment and have the
potential to decouple runtime complexity from the number
of people in the image. Yet, bottom-up approaches do not
directly use global contextual cues from other body parts
and other people. In practice, previous bottom-up meth-
ods [22, 11] do not retain the gains in efficiency as the fi-
nal parse requires costly global inference. For example, the
seminal work of Pishchulin et al. [22] proposed a bottom-up
approach that jointly labeled part detection candidates and
associated them to individual people. However, solving the
integer linear programming problem over a fully connected
graph is an NP-hard problem and the average processing
time is on the order of hours. Insafutdinov et al. [11] built
on [22] with stronger part detectors based on ResNet [10]
and image-dependent pairwise scores, and vastly improved
the runtime, but the method still takes several minutes per
image, with a limit on the number of part proposals. The
pairwise representations used in [! 1], are difficult to regress
precisely and thus a separate logistic regression is required.

https://arxiv.org/pdf/1812.08008.pdf



Stacked hourglass architecture

Stacked Hourglass Networks for
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U tecture for the task of human pose estimation. Features are processed | |l | | ||  }"" /N 7 2 ' '
J) across all scales and consolidated to best capture the various spatial re-
&) lationships associated with the body. We show how repeated bottom-up,
S top-down processing used in conjunction with intermediate supervision
N is critical to improving the performance of the network. We refer to the
> architecture as a “stacked hourglass” network based on the successive
~ steps of pooling and upsampling that are done to produce a final set of
cn predictions. State-of-the-art results are achieved on the FLIC and MPII
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Fig. 1. Our network for pose estimation consists of multiple stacked hourglass modules )
which allow for repeated bottom-up, top-down inference.
r
1 Introduction - £
S ¥

A key step toward understanding people in images and video is accurate pose
estimation. Given a single RGB image, we wish to determine the precise pixel
location of important keypoints of the body. Achieving an understanding of a
person’s posture and limb articulation is useful for higher level tasks like ac-
tion recognition, and also serves as a fundamental tool in fields such as human-
computer interaction and animation.
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