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14. Representation Learning

 Representations in the brain
 What is learned by a deep net?
* Transfer learning and finetuning

 Unsupervised and self-supervised learning
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'| stand at the window and see a house, trees, sky. Theoretically | might say there
were 327 brightnesses and nuances of colour. Do | have "327"? No. | have sky,
house, and trees.”

— Max Wertheimer, 1923



Representation learning

Compact mental
representation



Representation learning

Good representations are:

1. Compact (minimal)

2. Explanatory (sufficient)

3. Disentangled (independent factors)

4. Interpretable

5. Make subsequent problem solving easy

[See ©

Representation Learning”,

Bengio 2013, for more commentary]



Representation learning

Convolution is pointwise multiplication in the frequency domain.
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Classical object recognition

-dges

Texture

Colors

Feature extractors

;

Segments

Parts

\

Classifier

“clown fish”



Deep learning

| earned

“clown fish”




What do deep nets internally learn”

— o — FiSP’

VOO0 00e OO
.QQCIDQQQ
@O0




Deep Net "Electropnysiology’

| Zeller & Fergus,

[Zhou et al., ICLR 2015

-CCV 2014




Visualizing and Understanding CNNs

|Zeller and Fergus, 2014

Image patches that activate each of the
layer 1 filters most strongly
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Gabor-like filters learned by layer 1
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| Zeiler and Fergus, 2014]
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Image patches that activate
several of the layer 2
neurons Most strongly
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| Zeiler and Fergus, 2014]

Image patches that activate B
several of the layer 3 ’
neurons most strongly
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| Zeiler and Fergus, 2014]

Image patches that activate
several of the layer 4
neurons Most strongly




| Zeiler and Fergus, 2014]
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Image patches that activate
several of the layer 5
neurons Most strongly




CNNs /learned the classical visual recognition pipeline!

-dges
\ Segments

Texture

“clown fish”

\/

Parts

Colors




Object Detectors Emergence in Deep Scene CNNSs
|Zhou, Khosla, Lapedriza, Oliva, Torralba, ICLR 2015]

Simple elements & colors Texture materials Region or surface

Obiject part

0N

N
(-

N
o

-
o

percent units (perf>75%)
W
-

—@— places-CNN
—{— imagenet-CNN
N\ &Q, R\ SN

Q
S & P
T P &£ Q




im2vec

L= layer 3 representation of image

L 2
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................. layer 1 representation of image

Represent image as a neural embedding — a vector/tensor of neural activations
(perhaps representing a vector of detected texture patterns or object parts)




Investigating a representation via similarity analysis

How similar are these two images”? @

How about these two?

ﬂ

[Kriegeskorte et al. 2008]



Investigating a representation via similarity analysis

S

h; — h,

Representational Dissimilarity Matrix

dissimilarity

/

Neural activation vector

[Kriegeskorte, Mur, Ruff, et al. 2008]



Investigating a representation via similarity analysis

I'T Neuronal Units Deep net (in paricular, HMO)
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DiCarlo,

ONAS 2014]



Investigating a representation via similarity analysis

Deep nets and the primate brain both learn similar metric spaces.

Deep nets organize visual information similarly to how our brains do!

[Yamins, Hong, Cadieu, Solomon, Seibert,

DiCarlo,

ONAS 2014]



What do deep nets internally learn”
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A CNN iIs a multiscale,
hierarchical
representation of data

Representations!



Transter learning

“Generally speaking, a good representation is one that makes a subsequent
learning task easier.” — Deep Learning, Goodfellow et al. 2016




Traming Testing

Object recognition Place recognition

Often, what we will be “tested” on is to learn to do a new thing.



Pretraining Finetuning Testing

Object recognition Place recognition Place recognition
> “Fish” = ﬂﬂ» bedroom > ’?
A lot of data A little data

Finetuning starts with the representation learned on a previous
task, and adapts it to perform well on a new task.



FInetuning In practice

e Pretrain a network on task A (often object recognition), resulting in
parameters W and b

e |nitialize a second network with some or all of W and b

® [rain the second network on task B, resulting in parameters W’ and b’



FInetuning In practice

Pretraining Finetuning

Object recognition Place recognition

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana
elephant

[e]eX JoI Jelele]




FInetuning In practice

Pretraining

Object recognition

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana
elephant

[e]eX JoI Jelele]

Finetuning

Place recognition

v
[GeleX Yol

nathroom
KItchen
nedroom

Iving room

nallway

The “learned representation” is just the weights and biases, so
that’s what we transfer



What if the input/output dimensions don’t match?

Pretraining
wheat
corn
Finetuning

y/
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Pretraining

(| wheat

f @| corn

Finetuning

yl
@| wheat

f — || corn
()| soybeans




What it the input/output dimensions don’t match?
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What it the input/output dimensions don’t match?
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Supervised object recognition

Learner

mage X label Y



Supervised object recognition

Learner

lapel Y




Supervised object recognition

Learner

lapel Y



Supervised object recognition

Learner

lapel Y







Supervised computer

. Vision in nature
vision

Handa-curated training data

+ Informative

- EXpensive

- Limited to teacher's knowledge

Raw unlabeled training data
+ Cheap

- Noisy

- Rarder to Interpret

homework

i
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|_earning from examples

(aka supervised learning)

Training data

{atV) y1}
{2y — Learner | — f: X — Y

{x(i%) | y(S)}

fr= argmmZE Ly )

JFer



|_earning without examples

(includes unsupervised learning and reinforcement learning)

Data

{z1}
{«} — Learner | —> ?
{2}




Representation Learning

Data
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L.earner

— Representations



Unsupervised Representation Learning

Compact mental
representation



Unsupervised Representation Learning

compressed image code
veclor z
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Unsupervised Representation Learning

compressed image code
veclor z
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Reconstructed
image
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‘Autoencoder’

[e.g., Hinton & Salakhutdinov, Science 2000]
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image

Reconstructed




Data

{X(i)}iNﬂ —

Autoencoder

L.earner

Objective
L(f(x),x) = |f(x)—x|;

Hypothesis space
Neural net with a bottleneck

Optimizer
SGD




Reconstructed
image
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Steerable Pyramid — A hard-coded autoencoder
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Data compression

Data



|_abel prediction

e.g., Image classification



Data prediction
aka “self-supervised learning”

Some data Other data



Grayscale image: L channel
X € ]RHxle

L=

Color information: ab channels
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[Zhang, |sola,

—fros,

—CCV 2010]



Deep Net "Electrophysiology’

[Zeiler & Fergus, ECCV 2014
[Zhou et al., ICLR 2015




Stimuli that drive selected neurons (convb layer)

flowers




elf-supervised learning

Common trick:
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MVultisensory self-supervision

Supervised Self-Supervised

- derives label from a
co-occurring input to

- Implausible label

" " another modalit
COW g
Target //—\
oY o Lo ool
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Input 1 Input 2
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Virginia de Sa. Learning Classification with Unlabeled Data. NIPS 1994,

[see also “Six lessons from babies”, Smith and Gasser 2005]



‘Multiview” selt-supervised
predictive learning

L.earner

Data
Ob Jectlve

(x(N are manD — f

7N

g and h are two “views” of the data x,
e.g., two different sensory channels

Distance function



The allegory of the cave
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Ambient Sound Provides
Supervision for Visual Learning

Andrew Owens  Jiajun Wu  Josh McDermott
William Freeman = Antonio lorralba



Andrew Owens]

[Slide cred



Predicting ambient sound

TOETY =

[Slide credit: Andrew Owens]



What did the model learn?

Unit #90 of 256

Strongest responses in dataset

Visualization method from (Zhou 2015)

[Slide credit: Andrew Owens]






Reconstructed
image

compressed image code
veclor z
L ogistic regression;

|S the code informative about
; ?
object class V' y = o(Wz+b



I

Layer 1 representation Layer 6 representation

structure, construction
covering

commodity, trade good, good
conveyance, transport
invertebrate [DeCAF, Donahue, Jia, et al. 2013]
Eggting dog |Visualization technigue : t-sne, van der Maaten & Hinton, 2008]




Classification performance
ImageNet Task [Russakovsky et al. 2015]
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Observations




Observations

The way you measure the world does not change the underlying state



Contrastive Multiview Coding
[Tian, Krishnan, Isola, ECCV 2020]
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“‘Multiview” selt-supervised
contrastive learning

Learner
Data
xW, - R — f1,f
i=1 ATE ;nin > "D(f1(g(x)), fo(h(x 1y 2
)) ; f 2 (h(

"N f
!
%~ = j ‘

Distance function g and h are two “views” of the data x,
e.g., two different sensory channels



SImMCLR
|[Chen, Kornblith, Norouzi, Hinton, ICML 2020]

Self-organizing neural network
that discovers surfaces in
random-dot stereograms

Suzanna Becker & Geoffrey E. Hinton

Department of Computer Science, University of Toronto,
10 King's College Road, Toronto M5S 1A4, Canada

THE standard form of back-propagation learning’ is implausible
as a model of perceptual learning because it requires an external
teacher to specify the desired output of the network. We show how
the external teacher can be replaced by internally derived teaching
signals. These signals are generated by using the assumption that
different parts of the perceptual input have common causes in the
external world. Small modules that look at separate but related
parts of the perceptual input discover these common causes by
striving to produce outputs that agree with each other (Fig. 1a).

[c.f. Becker & Hinton, Nature 1992]




Unsupervised visual representation learning

oy context prediction
|Carl Doersch, Abhinav Gupta, Alexel A. Efros, ICCV 2015]



Context as Supervision
[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters ~~-
[Slide credit: Carl Doersch]
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[Slide credit: Carl Doersch]



Semantics from a non-semantic task

[Slide credit: Carl Doersch]



Relative Position Task
" :::'|:|

é8 possible locations

"R

omly Sample Patch
S mple Second Patch

[Slide credit: Carl Doersch]



Patch Embedding (representation)

Nearest Ne1ghbors

CNN Note: connects across instances!

[Slide credit: Carl Doersch]



Variations: DINO
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Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.
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Variations: DINO
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Variations: DINO
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de Sa. NIPS 1994,
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Owens et al. ECCV 2016.

Generative Modeling
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Donahue et al. Dumoulin et al. ICLR 2017.
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Noroozi and Favaro ECCV 2016
Doersch et al. ICCV 2015.
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Stream1 |
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Stream 2 5

Agrawal et al. ICCV 2015. Jayaraman et al. ICCV 2015
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Wang et aI ICCV 2015. Pathak et aI CVPR 2017.
Misra et al. ECCV 2016.

BOROO}-—= (00000 (Q0000)

Vincent et al. ICML 2008.

Science 20060.

Goal: Set up a pre-training scheme to induce a “useful” representation [Slide credit: Richard Zhang]



Y. LeCun

How Much Information is the Machine Given during Learning?

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

p A few bits for some samples

P Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data

> 10—10,000 bits per sample

P Self-Supervised Learning (cake génoise)
» The machine predicts any part of its input for any
observed part.

» Predicts future frames in videos
» Millions of bits per sample [Slide Credit: Yann LeCun]

© 2019 IEEE International Solid-State Circuits Conference 1.1: Deep Learning Hardware: Past, Present, & Future 59



Summary

1. Deep nets learn representations, just like our brains do

2. This Is useful because representations transfer — they act as prior
knowledge that enables quick learning on new tasks

3. Representations can also be learned without labels, which is great since
labels are expensive and limiting

4. Without labels there are many ways to learn representations. \We saw;
1. representations as compressed codes
2. representations that are shared across sensory modalities

3. representations that are predictive of thelr context



