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13. Temporal Processing and RNNs

* Sequence problems

* Temporal convnets
e Recurrent Neural Networks (RNNs)
e [STMs
e Attention
* Example problems:
* Image captioning
* Sound prediction

e Transformers
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question answering

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



http://karpathy.github.io/2015/05/21/rnn-effectiveness/







Hn

i







Convolutions In time

10I®] I JVIO1 1O 1 JOI0I0]®

0000000000000 00®

time






“The Persistence of Memory”,
Dali 1931

It bothered him that the dog at three fourteen (seen from the side) should have the
same name as the dog at three fifteen (seen from the front).
— “Funes the Memorius”, Borges 1962
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Recurrent Neural Networks (RNNS)
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Recurrent Neural Networks (RNNSs)
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Recurrent Neural Networks (RNNS)
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Recurrent Neural Networks (RNNSs)
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Deep Recurrent Neural Networks (RNNS)
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Recurrent linear layer




The problem of long-range dependences

Why not remember everything”
e Memory size grows with t

 [his kind of memory Is nonparametric: there is no finite set of
parameters we can use to model it

e BNNs make a Markov assumption — the future hidden state only
depends on the iImmediately preceding hidden state

o By putting the right info in to the hidden state, RNNs can model
depedences that are arbitrarily far apart



The problem of long-range dependences

Outputs y

Hidden h

oy, Oy; Ohy ohy Ohg time

O0xo Oh,0h,_;  Ohg 0%

e Capturing long-range dependences requires propagating information
through a long chain of dependences.

e Old observations are forgotten

e Stochastic gradients become high variance (noisy), and gradients may
vanish or explode




LSTMs

Long Short Term Memory
[Hochreiter & Schmidhuber, 1997]

A special kind of RNN designed to avoid forgetting.

This way the default behavior is not to forget an old state. Instead of forgetting
by default, the network has to learn to forget.
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[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
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Ci = Cell state

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ft Jt =0 (Wf’[ht—laft] bf)

Decide what information to throw away from the cell state.

Each element of cell state is multiplied by ~1 (rememlber) or ~0 (forget).

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
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what to write to those indices

Decide what new information to add to the cell state.

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
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f itr-%' (' = ft * Cp_1 + 14 * ét

Forget selected old information, write selected new information.

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
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After having updated the cell state’s information, decide what to output.

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]
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Image Captioning

Vision Language A grou_p of peOpIe
Deep CNN Generating shopping at an
RNN outdoor market.

O

- There are many
vegetables at the
fruit stand.

[Example above from: Vinyals, Toshev, Bengio, Erhan, CVPR 2015, https://arxiv.org/abs/1411.4555]



Recipe for deep learning in a new domain

1. Transform your data into numbers (e.g., a vector)

2. Transform your goal into a numerical measure (objective function)

3. #1 and #2 specify the “learning problem”

4. Use a generic optimizer (SGD) and an appropriate architecture (e.g., CNN or
RNN) to solve the learning problem



How to represent words as numbers”?

One-hot vector

Training data Training data Training data
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How to represent words as numbers”?

Prediction 'y
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How to represent words as numbers”?

Prediction 'y
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Rather than having just a handful of
possIble object classes, we can
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I

apsolve (B

I
adapt |l vocabulary using a very large K

_

i

I

accurate

(e.g., K=100,000).

aether
after

aghast




How to represent words as numbers”?

Prediction 'y
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This problem is called image captioning
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Alternatively, sample most likely word.
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The problem of long-range dependences

Why not remember everything”
e Memory size grows with t

 [his kind of memory Is nonparametric: there is no finite set of
parameters we can use to model it

e BNNs make a Markov assumption — the future hidden state only
depends on the iImmediately preceding hidden state

o By putting the right info in to the hidden state, RNNs can model
depedences that are arbitrarily far apart
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The problem of long-range dependences

Other methods exist that do directly link old “memories”
(Observations or hidden states) to future predictions:

e [emporal convolutions

o Attention / Transformers (see https://arxiv.org/albs/1706.03762)

e Memory networks (see https://arxiv.org/abs/1410.3916)


https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1410.3916
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FProblems with Recurrent Architectures

* | ong sequences still tricky, exploding / vanishing gradients
* [nherently sequential: Need to generate word after word...

e Regularly do not remember long-ago events.

Attention Is All You Need
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Encoding Sequences with Attention

Output
Tokens
~{oaJ)(aJ)(a (o)) (o
J— ) ) £ ) S
N Self-Attention Blocks
Input
Embedding - | | | | | | Y

e
N/
)

)
———/
—)

o
—
—

RN G I

A clownfish swimming by an anemone



Encoding Sequences with Attention
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Core component: Dot-product Attention
(drastically simplified)




Core component: Dot-product Attention
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Core component: Dot-product Attention
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Core component: Dot-product Attention
(drastically simplified)




Scaled Dot-Product Attention

V.Q, = linear (1), V., Q, € R

Inspired by Alammar, J (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/



https://jalammar.github.io/illustrated-transformer/

Scaled Dot-Product Attention

V.Q, = linear (1), V., Q, € R

| O,
a/ = softmax ( Nz )

Inspired by Alammar, J (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/
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Scaled Dot-Product Attention

V.Q, = linear (1), V., Q, € R

| O,
a/ = softmax ( Nz )
Oj — Z a{Vl-

Inspired by Alammar, J (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/
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Multi-Head Attention
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[“Attention is all you need”, Vaswani et al. 2017]
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Not only for Seg25Seq: Vision Transformers
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[“An Image is Worth 16x16 Words”, Dosovitskiy et al. 2021]



Not only for Seg25Seq: Vision Transformers
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[class] embedding Linear Projection of Flattened Patches

[“An Image is Worth 16x16 Words”, Dosovitskiy et al. 2021]



Image Captioning... with Transformers

( N a puppy rests ... next to a bicycle <eos>
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