# Advances in Computer Vision 

Lecture TR 1pm - 2:30pm, room 26-100

## Undergraduate and Graduate versions of this class share the same lectures.

- Undergraduate version, 6.8301, 15 units:
- Satisfies MIT's CI-M requirement (Communication Intensive, within the Major).
- WRAP (Writing, Rhetoric, And Professional communication) staff will offer $\sim 8$ recitations and provide coaching on communication aspects of the class. .
- Their assessments and your participation in the required CI-M recitations will be 10\% of your final grade. Please fill-out this Google doc to help schedule the sections.
- Non-MIT students taking the undergraduate class must still fulfill (and thus benefit from) the CI-M components of the class.
- Summary: More in-class time that graduate version: about 8 required recitations—coaching related to communication elements of the class. Sometimes shorter problem sets and shorter final project.
- Graduate version, 6.8300, 12 units:
- Problem sets will usually have one or two problems for the graduate students only (or for extra credit for undergraduates).
- Final projects will be longer and graded to a higher standard than undergraduate version final projects.
- We're sorry, but the CI-M recitations and instruction are only available to those enrolled in 6.8301. (But the MIT Writing and Communication Center, not part of this class, is available to all MIT students: http://cmsw.mit.edu/writing-and-communication-center)


## Grading

- Problem sets (60\%)
- Final Project (40\%)
- for 6.8301 students, $10 \%$ of course grade will come from classes $\mathrm{Cl}-\mathrm{M}$ components, including required recitations. That will be folded into your final project grade (thus, 1/4 of the final project grade).
- No exams or quizzes


## Problem sets



- Problem sets will be posted usually weekly, usually due one week later. See course web page, http://6.8300.csail.mit.edu/sp23/, for the schedule.
- Grades returned two weeks after due date.
- Late penalty: submission deadline is $23: 59$ on the due date. Late submissions accepted up to one week after deadline, but grade decays linearly down to $1 / 2$ credit over that time (then 0 credit).
- Important-reason grace allowance for late submissions: 3 days, for any important reason. No need to clear it with us, but there's no "saving" it-must be used with any extension. Any request beyond that allowance requires $\mathrm{S}^{\wedge} 3$ approval (MIT’s student support services).
- Only electronic problem set submissions will be accepted, no hard copies.
- Collaboration policy:
- You can talk with each other, get advice, and ask questions on Piazza, but the writing and coding must be done individually and never shared.


## Final Project

- We will provide a list of projects to pick from, or you can propose your own. Can work in pairs, or individually.
- You'll write a final project proposal, and (for 6.8301) a revision of that proposal.
- Every person gives a short presentation of their project during the final week, and submits their written final project.


## Additional Information

- For office hours, see course website, http://6.8300.csail.mit.edu/ sp23/.
-Use TA office hours: for psets questions.
-Use faculty office hours: for questions about lectures or projects.
- Piazza: to ask questions of other students and TA's, use Piazza.
- Textbook: we will post relevant chapters from forthcoming MIT Press computer vision textbook. Other resources are listed on course web page, many of which are free and online.


## Course content

- We will cover: Cameras, optics, signals, deep learning, applications, and practical research issues.
- See course web page for schedule/syllabus:


## http://6.8300.csail.mit.edu/sp23/

- Math: Linear algebra, geometry, multivariate calculus, optimization, probabilistic inference, machine learning , deep nets.
- Coding: Python, PyTorch
- Tutorials in Python and Pytorch will be announced and offered before the assignments that first use them.


## Other questions:

We'll be in the lobby just outside 26-100 after this class for any immediate questions today.

Other mechanisms to answer general questions about the class:
piazza
TA's or faculty members during their office hours
course web page: http://6.8300.csail.mit.edu/sp23/

## Lecture 1

## Introduction to computer vision

## To see

"What does it mean, to see? The plain man's answer (and Aristotle's, too). would be, to know what is where by looking."

To discover from images what is present in the world, where things are, what actions are taking place, to predict and anticipate events in the world.

## Exciting times in computer vision

Robotics


Driving


Medical applications


Gaming


## Exciting times in computer vision


"A cup of cat"


## When some of us started...



Why is vision hard?

## The input

## What the machine gets

|  | [160175171168168172164158167173167163162 164160159163162 ] |
| :---: | :---: |
|  | 14916417217517817917611897168175171169175176177165152 |
|  | 161166182171170177175116109169177173168175175159153123 |
|  | 171174177175167161157138103112157164159160165169148144 |
|  | 1631631621651671641781677755134170167162164175168160 |
|  | 173164158165180180150896134137186186182175165160164 |
|  | 15215514614716918016351 |
|  | 13413514714915014714862 36 46114157163167169163146147 |
|  | 135132131125115129132745441104156152156164156141144 |
|  | 1511551511451441491437131 |
|  | 17217417817717718117454 |
|  | 177178176173174180150271019474189188186183186188187 |
|  | 1601601631631611671004516916659136184176175177185186 |
|  | 1471501531551601555611118218010484168172171164168167 |
|  | 1841821781751791338619120120419179172220217205209200 |
|  | 1841871921821243210916817116716351105203209203210205 |
|  | 191198203197175149169189190173160145156202199201205202 |
|  | $153149153155173182179177182177182185179177167176182180]$ |

## The input

## What the machine gets

 $\begin{array}{lllllllllllllllllllll}149 & 164 & 172 & 175 & 178 & 179 & 176 & 118 & 97 & 168 & 175 & 171 & 169 & 175 & 176 & 177 & 165 & 152\end{array}$ $\begin{array}{llllllllllllllllllllllll}161 & 166 & 182 & 171 & 170 & 177 & 175 & 116 & 109 & 169 & 177 & 173 & 168 & 175 & 175 & 159 & 153 & 123\end{array}$







 $\begin{array}{lllllllllllllllllllll}177 & 178 & 176 & 173 & 174 & 180 & 150 & 27 & 101 & 94 & 74 & 189 & 188 & 186 & 183 & 186 & 188 & 187\end{array}$ $\begin{array}{llllllllllllllllllllll}160 & 160 & 163 & 163 & 161 & 167 & 100 & 45 & 169 & 166 & 59 & 136 & 184 & 176 & 175 & 177 & 185 & 186\end{array}$

 $184187192182124 \quad 3210916817116716351105203120920310205$
 $153149153155173182179177182177182185179177167176182180]$

## To see: perception vs. measurement



To see: perception vs. measurement


$$
5
$$



## A short story of vision research



## The Greeks

Intromission theory


Democritus (460-370 B.C)


## The Greeks

## Extramission (emission) theory


"So much of fire as would not burn, but gave a gentle light"
Plato
Empedocles (500 BC)
Plato (360 BC)

## Extramission theory

## Plato's theory of vision (427-347 BC)

"And of the organs they first contrived the eyes to give light, and the principle according to which they were inserted was as follows: So much of fire as would not burn, but gave a gentle light, they formed into a substance akin to the light of every-day life; and the pure fire which is within us and related thereto they made to flow through the eyes in a stream smooth and dense, compressing the whole eye, and especially the centre part, so that it kept out everything of a coarser nature, and allowed to pass only this pure element. When the light of day surrounds the stream of vision, then like falls upon like, and they coalesce, and one body is formed by natural affinity in the line of vision, wherever the light that falls from within meets with an external object.

## FOCUS PHILOSOPHICAL LIBRARY

## PLATO



SECOND EDITION


Transkted and Edited by PETER KALKAVAGE

## Euclid (325 BC)

"Let it be assumed that lines draw directly from the eye pass through a space of great extent; and that the form of the space included within our vision is a cone..." Euclid (translated by Burton)


Remarkable key idea: light travels in straight lines

DEfintions

1. Let it be assumed that lints drawn directly from the net pass through a space of great extent;
2. and that the form of the space included within our isin is a con vi, xith its apex in the eye atd its base at the init of our vision;
3. and that those
*n. and that those things upon which the vision does not Call are not seen;
4. and that those things seen within a larger angle maller, and those seen within equal angles appear to be of the same size:
5. and that things seen within the higher visual range lower: higher, while those within the lower range appear
6 . and, similarly, that those seen within the visual range on he eright appear on the right. while those within that on
the left appear on the left; he left appear on the left; we more clear.
Joathing that is seen is seen at once in it ortecty. (Fi, i) Worning that is seen is seen at once in its entirety. (Fig. 1).
For the thing seen be $A D$, and let the eye be $B$, from hirh let the rays of vision fall, $B A, B G, B K$, and $B D$. So, since the rays of vision, as they fall, diverge from one another, they could not fall in continuous line upon $A D$;
$\infty$ that there would be spaces also in $A D$, nyss of vision would not fall. So $A D$ will not be seen in its entirely at the same trme. But it seems to be seen all at ance because the rays of vision shift rapidly.
Objects located nearby are seen more clearly than objects of aypul size located at a distance. (Fig. 2.)

Let $B$ represent the eye and let $G D$ and $K L$ :epresent the objects seen; and we must understand that they are equal
and parallel, and let $G D$ be nearer to the eye; and eft rays of visio, fall. $B G, B D, B K$, and $B L$. For we could no say that tne rays falling from the eye upon $K L$ will pass through the points $G$ and $D$. For in the triangle $B D L K G B$
the line $K L$ would be longer than the line $G D$; but they are supposed to be of equal length. So $G D$ is seen by more rays of the eye than $K L$. So $G L$ will appear more clear than $K L$ for objects seen within more argles appear more clear.
Every object seen has a certain limit of distance, and when
this is reached it is seen For let the eye be $B$, and let the object
For let the eye be $B$, and let the object seen be $G D$.
I say that $G D$, placed $2 t$ a certain distance, will longer. For let $G D$ lie midway in the divergence of the rays. at the limit of which is $K$. So, none of the rays from $B$ will fall upon $K$. And the thing upon which rays do not fall is
not seen. Therefore, every object seen tys a cert not seen. Therefore, every object seen taas a certain limit
of distance, and, when this is reached, the object is seen no longer.
Of equal spaces located ufon the same straight line, those Leen from a greater distance appear shorker. (Fig. 4.) Let $A B, B G$, and $G D$ represent equal spaces upon one
straight line, and let the perpendicular $A E$ be diawn, which iet $E$ represent tie eye. I say that $A g$ will appear longer than $B G$ and $B G$ longer than $\dot{E} E$. Yor let the rays $f$ fall, $E B, E L$, and $E D$, and th- uugh the point $B$ let $B Z$ be drawn parallel to the straisht line $C E$ Now $A Z$ is equal to $E Z$. For, since parallei to $G Z$, one sicie of ti-t triangle $A E G$, is related to $Z A$ as $G B$ to $B A$. So, as has been waid $A Z$ is equa' to $Z E$. But the side $B Z$ is longer than $Z A$; and so,



Fic. 4.



## MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Artificial Intelligence Group
Vision Memo. No. 100.

## THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

## The goal of the first lecture and pset1 is to solve vision

## Task: given a picture...



## ... recover the 3D scene structure



## A Simple Visual System

- A simple world
- A simple goal
- A simple image formation model


## A Simple World



## A Simple World

## MACHINE PERCEPTION OF THREE-DIMENSIONAL SOLIDS

## by

LAWRENCE GILMAN ROBERTS

Submitted to the Department of Electrical Engineering on May 10, 1963, in partial fulfillment of the require ments for the degree of Doctor of Philosophy.


Complete Convex Polygons. The polygon selection procedure would select the numbered polygons as complete and convex. The number indicates the probable number of sides. A polygon is incomplete if one of its points is a collinear joint of another polygon.

The problem of machine recognition of pictorial data has long been a challenging goal, but has seldom been attempted with anything more complex than alphabetic characters. Many people have felt that research on character recognition would be a first step, leading the way to a more general pattern recognition system. However, the multitudinous attempts at character recognition, including my own, have not led very far. The reason, I feel, is that the study of abstract, twodimensional forms leads us away from, not toward, the techniques necessary for the recognition of three-dimensional objects.
... first computer vision PhD

## Build your own simple world



## A simple goal

To recover the 3D structure of the world from the 2D image


We will make this goal more explicit later.

## A simple image formation model

Simple world rules:

- Surfaces can be horizontal or vertical.
- Objects will be resting on a white horizontal ground plane



## A simple image formation model

Perspective projection


Parallel (orthographic) projection


## A simple image formation model


(right-handed reference system)

## A simple image formation model


(right-handed reference system)

A simple image formation model
Image and projection of the world coordinate axes into the image plane



## A simple goal

To recover the 3D structure of the world from the 2D image


We want to recover $\mathbf{X}(\boldsymbol{x}, \boldsymbol{y}), \mathbf{Y}(\boldsymbol{x}, \boldsymbol{y}), \mathbf{Z}(\mathbf{x}, \mathbf{y})$ using as input $\mathbf{I}(\boldsymbol{x}, \boldsymbol{y})$

Why is this hard?


Sinha \& Adelson 93

Why is this hard?


Sinha \& Adelson 93

## Why is this hard?



Figure 1. (a) A line drawing provides information only about the $x, y$ coordinates of points lying along the object contours. (b) The human visual system is usually able to reconstruct an object in three dimensions given only a single 2D projection (c) Any planar line-drawing is geometrically consistent with infinitely many 3D structures.

## A simple visual system The input image



In this representation, the image is an array of intensity values (color values) indexed by location.

## A better representation: Figure/ground



## Ground

For ground pixels, we know that $Y(x, y)=0$


In our simple world:
Using the fact that objects have color and are darker than the ground.

## Figure/ground segmentation



## A better representation: Edges



## Finding edges in the image

Image gradient:

$$
\nabla \mathbf{I}=\left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right)
$$

Approximation image derivative:

$$
\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y)-\mathbf{I}(x-1, y)
$$

Edge strength

$$
E(x, y)=|\nabla \mathbf{I}(x, y)|
$$

Edge orientation: $\quad \theta(x, y)=\angle \nabla \mathbf{I}=\arctan \frac{\partial \mathbf{I} / \partial y}{\partial \mathbf{I} / \partial x}$
Edge normal: $\quad \mathbf{n}=\frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}$

## Finding edges in the image



$$
\nabla \mathbf{I}=\left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right) \quad \mathbf{n}=\frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}
$$



## Edge classification

- Figure/ground segmentation
- Using the fact that objects have color
- Occlusion edges
- Occlusion edges are owned by the foreground

- Contact edges


From edges to surface constraints


## From edges to surface constraints

- Ground

- Contact edge

- What happens inside the objects?
... now things get a bit more complicated.


## Generic view assumption



Generic view assumption: the observer should not assume that he has a special position in the world... The most generic interpretation is to see a vertical line as a vertical line in 3D.

## Non-accidental properties


D. Lowe, 1985

Principle of Non-Accidentalness: Critical information is unlikely to be a consequence of on occident of viewpoint.

Three Spoce Inference from lmage Features
2-D Relation

| 1. Collinearity of |
| :--- |
| Doints or lines |

Collinearity in 3-Space inference


Figure 4. Five nonaccidental relations. (From Figure 5.2, Perceptual organization and visual recognition [p. 77] by David Lowe. Unpublished doctorial dissertation, Stanford University. Adapted by permission.)

Non-accidental properties in the simple world


## From edges to surface constraints

How can we relate the information in the pixels with 3D surfaces in the world?

## - Vertical edges are 3D vertical lines


image coordinates

Given the image, what can we say about $X, Y$ and $Z$ in the pixels that belong to a vertical edge?
$\rightarrow\left\{\begin{array}{l}\mathrm{Z}=\text { constant along the edge } \\ \partial Y / \partial y=1 / \cos (\theta)\end{array}\right.$

## From edges to surface constraints

- Horizontal edges are 3D horizontal lines

image coordinates

Given the image, what can we say about $X, Y$ and $Z$ in the pixels that belong to an horizontal 3D edge?


## From edges to surface constraints

- What happens where there are no edges?


Assumption of planar faces:

$$
\begin{aligned}
\partial^{2} Y / \partial x^{2} & =0 \\
\partial^{2} Y / \partial y^{2} & =0 \\
\partial^{2} Y / \partial y \partial x & =0
\end{aligned}
$$

Information has to be propagated from the edges

## A simple inference scheme

## All the constraints are linear

$$
\begin{array}{ll}
Y(\mathrm{x}, \mathrm{y})=0 & \text { if }(\mathrm{x}, \mathrm{y}) \text { belongs to a ground pixel } \\
\partial Y / \partial y=1 / \cos (\theta) & \text { if }(\mathrm{x}, \mathrm{y}) \text { belongs to a vertical edge } \\
\partial Y / \partial \mathbf{t}=0 & \text { if }(\mathrm{x}, \mathrm{y}) \text { belongs to an horizontal ec } \\
\begin{aligned}
\partial^{2} Y / \partial x^{2}=0 & \text { if }(\mathrm{x}, \mathrm{y}) \text { is not on an edge } \\
\partial^{2} Y / \partial y^{2}=0 & \\
\partial^{2} Y / \partial y \partial x=0 &
\end{aligned}
\end{array}
$$

A similar set of constraints could be derived for $Z$

## Discrete approximation

## We can transform every differential constrain into a discrete linear constraint on $\mathrm{Y}(\mathrm{x}, \mathrm{y})$



$$
\frac{d Y}{d x} \approx Y(x, y)-Y(x-1, y)
$$

A slightly better approximation
(it is symmetric, and it averages horizontal derivatives over 3 vertical locations)

| -1 | 0 | 1 |
| :--- | :--- | :--- |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

## Discrete approximation

Transform the "image" $Y(x, y)$ into a column vector:
$x=2, y=1$

$\frac{d Y}{d x} \approx Y(x, y)-Y(x-1, y) \stackrel{\downarrow}{=} Y(2,1)-Y(1,1)=$


A simple inference scheme


## Results

Representation 2

Representation 1
Edge normals


Input


New view points:

## Changing view point



## Generalization

## New view point:



It seems to work!


## Generalization 2nd test

## Impossible steps

24 Lightness Perception and
Lightness Illusions
EDWARD H. ADELSON


## Impossible steps



## Some keywords

- Light rays
- Image formation, parallel projection
- 3D, World and image coordinates
- Representation
- Figure / ground
- Edges
- Accidental views (generic view assumption)
- Image gradients and discrete approximation
- Inference
- Generalization


## Tasks: generic formulation



## Tasks: what humans care about



## Tasks: what humans care about



## Semantic segmentation:

Assign labels to all the pixels in the image

## Related tasks:

- Semantic segmentation
- Object categorization


## Tasks: what humans care about



## Making new images

## Tasks: what humans care about

## Adding missing content



Input image


## Tasks: what humans care about

Predicting future events


What is going to happen?

## 1. Introduction to computer vision

- History
- Perception versus measurement
- Simple vision system
- Taxonomy of computer vision tasks

